import datetime
import typing as tp
from functools import partial
import numpy as np
from automap import AutoMap # pylint: disable = E0611
from static_frame.core.doc_str import doc_inject
from static_frame.core.exception import InvalidDatetime64Initializer
from static_frame.core.exception import LocInvalid
from static_frame.core.index import INDEX_GO_LEAF_SLOTS
from static_frame.core.index import Index
from static_frame.core.index import IndexGO
from static_frame.core.index import _IndexGOMixin
from static_frame.core.util import DT64_DAY
from static_frame.core.util import DT64_H
from static_frame.core.util import DT64_M
from static_frame.core.util import DT64_MONTH
from static_frame.core.util import DT64_MS
from static_frame.core.util import DT64_NS
from static_frame.core.util import DT64_S
from static_frame.core.util import DT64_US
from static_frame.core.util import DT64_YEAR
from static_frame.core.util import DTYPE_BOOL
from static_frame.core.util import NAME_DEFAULT
from static_frame.core.util import TD64_DAY
from static_frame.core.util import TD64_MONTH
from static_frame.core.util import TD64_YEAR
from static_frame.core.util import DateInitializer
from static_frame.core.util import GetItemKeyType
from static_frame.core.util import IndexInitializer
from static_frame.core.util import NameType
from static_frame.core.util import WarningsSilent
from static_frame.core.util import YearInitializer
from static_frame.core.util import YearMonthInitializer
from static_frame.core.util import key_to_datetime_key
from static_frame.core.util import to_datetime64
from static_frame.core.util import to_timedelta64
if tp.TYPE_CHECKING:
import pandas # pylint: disable = W0611 #pragma: no cover
I = tp.TypeVar('I', bound='IndexDatetime')
#-------------------------------------------------------------------------------
# Specialized index for dates
class IndexDatetime(Index):
'''
Derivation of Index to support Datetime operations. Derived classes must define _DTYPE.
'''
STATIC = True
_DTYPE = None # define in derived class
__slots__ = ()
@doc_inject(selector='index_date_time_init')
def __init__(self,
labels: IndexInitializer,
*,
name: NameType = NAME_DEFAULT,
loc_is_iloc: bool = False,
):
'''Initializer.
{args}
'''
assert not loc_is_iloc
# __init__ here leaves out the dtype argument, reducing the signature to arguments relevant for these derived classes
Index.__init__(self,
labels=labels,
name=name,
loc_is_iloc=loc_is_iloc,
)
#---------------------------------------------------------------------------
# dict like interface
def __contains__(self, value: tp.Any) -> bool:
'''Return True if value in the labels. Will only return True for an exact match to the type of dates stored within.
'''
return self._map.__contains__(to_datetime64(value)) #type: ignore
#---------------------------------------------------------------------------
# operators
def _ufunc_binary_operator(self, *,
operator: tp.Callable[..., tp.Any],
other: object,
fill_value: object = np.nan,
) -> np.ndarray:
if self._recache:
self._update_array_cache()
if operator.__name__ == 'matmul' or operator.__name__ == 'rmatmul':
raise NotImplementedError('matrix multiplication not supported')
if isinstance(other, Index):
other = other.values # operate on labels to labels
other_is_array = True
elif isinstance(other, str):
# do not pass dtype, as want to coerce to this parsed type, not the type of self
other = to_datetime64(other)
other_is_array = False
elif other.__class__ is np.ndarray:
other_is_array = True
else:
other_is_array = False
if isinstance(other, np.datetime64):
# convert labels to other's datetime64 type to enable matching on month, year, etc.
result = operator(self._labels.astype(other.dtype), other)
elif isinstance(other, datetime.timedelta):
result = operator(self._labels, to_timedelta64(other))
else: # np.timedelta64 should work fine here
with WarningsSilent():
result = operator(self._labels, other)
# NOTE: similar branching as in container_util.apply_binary_operator
# NOTE: all string will have been converted to dt64, or raise ValueError; comparison to same sized iterables (list, tuple) will result in an array when they are the same size
if result is False: # will never be True
if not other_is_array and hasattr(other, '__len__') and len(other) == len(self):
# NOTE: equality comparisons of an array to same sized iterable normally return an array, but with dt64 types they just return False
result = np.full(self.shape, result, dtype=DTYPE_BOOL)
elif other_is_array and other.size == 1:
# elements in arrays of 0 or more dimensions are acceptable; this is what NP does for arithmetic operators when the types are compatible
result = np.full(self.shape, result, dtype=DTYPE_BOOL)
else:
raise ValueError('operands could not be broadcast together')
# raise on unaligned shapes as is done for arithmetic operators
result.flags.writeable = False
return result
def _loc_to_iloc(self, # type: ignore
key: GetItemKeyType,
*,
partial_selection: bool = False,
) -> GetItemKeyType:
'''
Specialized for IndexData indices to convert string data representations into np.datetime64 objects as appropriate.
'''
# not passing self.dtype to key_to_datetime_key so as to allow translation to a foreign datetime; slice comparison will be handled by map_slice_args
return Index._loc_to_iloc(self,
key=key,
key_transform=key_to_datetime_key,
partial_selection=partial_selection,
)
#---------------------------------------------------------------------------
def to_pandas(self) -> 'pandas.DatetimeIndex':
'''Return a Pandas Index.
'''
import pandas
return pandas.DatetimeIndex(self.values.copy(),
name=self._name)
#---------------------------------------------------------------------------
@doc_inject(selector='searchsorted', label_type='iloc (integer)')
def iloc_searchsorted(self,
values: tp.Any,
*,
side_left: bool = True,
) -> tp.Union[tp.Hashable, tp.Iterable[tp.Hashable]]:
'''
{doc}
Args:
{values}
{side_left}
'''
# permit variable forms of date specification
return Index.iloc_searchsorted(self, #type: ignore [no-any-return]
key_to_datetime_key(values),
side_left=side_left,
)
#-------------------------------------------------------------------------------
class _IndexDatetimeGOMixin(_IndexGOMixin):
_DTYPE: tp.Optional[np.dtype]
_map: tp.Optional[AutoMap]
__slots__ = () # define in derived class
def append(self, value: tp.Hashable) -> None:
'''Specialize for fixed-typed indices: convert `value` argument; do not need to resolve_dtype with each addition; self._map is never None
'''
value = to_datetime64(value, self._DTYPE)
if self._map is not None:
try:
self._map.add(value)
except ValueError as e:
raise KeyError(f'duplicate key append attempted: {value}') from e
self._labels_mutable.append(value)
self._positions_mutable_count += 1 #pylint: disable=E0237
self._recache = True #pylint: disable=E0237
#-------------------------------------------------------------------------------
[docs]class IndexYear(IndexDatetime):
'''A mapping of years (NumPy :obj:`datetime64[Y]`) to positions, immutable and of fixed size.
'''
STATIC = True
_DTYPE = DT64_YEAR
__slots__ = ()
[docs] @classmethod
def from_date_range(cls: tp.Type[I],
start: DateInitializer,
stop: DateInitializer,
step: int = 1,
*,
name: tp.Optional[tp.Hashable] = None) -> I:
'''
Get an IndexYearMonth instance over a range of dates, where start and stop are inclusive.
'''
labels = np.arange(
to_datetime64(start, DT64_DAY),
to_datetime64(stop, DT64_DAY).astype(DT64_YEAR) + TD64_YEAR,
np.timedelta64(step, 'Y'),
dtype=DT64_YEAR)
labels.flags.writeable = False
return cls(labels, name=name)
[docs] @classmethod
def from_year_month_range(cls: tp.Type[I],
start: YearMonthInitializer,
stop: YearMonthInitializer,
step: int = 1,
*,
name: tp.Optional[tp.Hashable] = None
) -> I:
'''
Get an IndexYearMonth instance over a range of months, where start and end are inclusive.
'''
labels = np.arange(
to_datetime64(start, DT64_MONTH),
to_datetime64(stop, DT64_MONTH).astype(DT64_YEAR) + TD64_YEAR,
np.timedelta64(step, 'Y'),
dtype=DT64_YEAR)
labels.flags.writeable = False
return cls(labels, name=name)
[docs] @classmethod
def from_year_range(cls: tp.Type[I],
start: YearInitializer,
stop: YearInitializer,
step: int = 1,
*,
name: tp.Optional[tp.Hashable] = None
) -> I:
'''
Get an IndexDate instance over a range of years, where start and end are inclusive.
'''
labels = np.arange(
to_datetime64(start, DT64_YEAR),
to_datetime64(stop, DT64_YEAR) + TD64_YEAR,
step=np.timedelta64(step, 'Y'),
)
labels.flags.writeable = False
return cls(labels, name=name)
#---------------------------------------------------------------------------
# specializations to permit integers as years
[docs] def __contains__(self, value: tp.Any) -> bool:
'''Return True if value in the labels. Will only return True for an exact match to the type of dates stored within.
'''
try:
return self._map.__contains__(to_datetime64(value, self._DTYPE)) #type: ignore
except InvalidDatetime64Initializer:
# if value is a dt64 and not of a the same unit as self._DTYPE, the initializations exception is raised, which means False
return False
def _loc_to_iloc(self, # type: ignore
key: GetItemKeyType,
*,
partial_selection: bool = False,
) -> GetItemKeyType:
'''
Specialized for IndexData indices to convert string data representations into np.datetime64 objects as appropriate.
'''
try:
return Index._loc_to_iloc(self,
key=key,
key_transform=partial(key_to_datetime_key, dtype=self._DTYPE),
partial_selection=partial_selection,
)
except InvalidDatetime64Initializer as e:
raise LocInvalid(e.args[0]) from None
#---------------------------------------------------------------------------
[docs] def to_pandas(self) -> None:
'''Return a Pandas Index.
'''
raise NotImplementedError('Pandas does not support a year type, and it is ambiguous if a date proxy should be the first of the year or the last of the year.')
[docs]class IndexYearGO(_IndexDatetimeGOMixin, IndexYear):
_IMMUTABLE_CONSTRUCTOR = IndexYear
__slots__ = INDEX_GO_LEAF_SLOTS
IndexYear._MUTABLE_CONSTRUCTOR = IndexYearGO
#-------------------------------------------------------------------------------
[docs]class IndexYearMonth(IndexDatetime):
'''A mapping of year months (NumPy :obj:`datetime64[M]`) to positions, immutable and of fixed size.
'''
STATIC = True
_DTYPE = DT64_MONTH
__slots__ = ()
[docs] @classmethod
def from_date_range(cls: tp.Type[I],
start: DateInitializer,
stop: DateInitializer,
step: int = 1,
*,
name: tp.Optional[tp.Hashable] = None
) -> I:
'''
Get an IndexYearMonth instance over a range of dates, where start and stop is inclusive.
'''
labels = np.arange(
to_datetime64(start, DT64_DAY),
to_datetime64(stop, DT64_DAY).astype(DT64_MONTH) + TD64_MONTH,
np.timedelta64(step, 'M'),
dtype=DT64_MONTH)
labels.flags.writeable = False
return cls(labels, name=name)
[docs] @classmethod
def from_year_month_range(cls: tp.Type[I],
start: YearMonthInitializer,
stop: YearMonthInitializer,
step: int = 1,
*,
name: tp.Optional[tp.Hashable] = None
) -> I:
'''
Get an IndexYearMonth instance over a range of months, where start and end are inclusive.
'''
labels = np.arange(
to_datetime64(start, DT64_MONTH),
to_datetime64(stop, DT64_MONTH) + TD64_MONTH,
np.timedelta64(step, 'M'),
dtype=DT64_MONTH)
labels.flags.writeable = False
return cls(labels, name=name)
[docs] @classmethod
def from_year_range(cls: tp.Type[I],
start: YearInitializer,
stop: YearInitializer,
step: int = 1,
*,
name: tp.Optional[tp.Hashable] = None
) -> I:
'''
Get an IndexYearMonth instance over a range of years, where start and end are inclusive.
'''
labels = np.arange(
to_datetime64(start, DT64_YEAR),
to_datetime64(stop, DT64_YEAR) + TD64_YEAR,
step=np.timedelta64(step, 'M'),
dtype=DT64_MONTH)
labels.flags.writeable = False
return cls(labels, name=name)
#---------------------------------------------------------------------------
[docs] def to_pandas(self) -> None:
'''Return a Pandas Index.
'''
raise NotImplementedError('Pandas does not support a year month type, and it is ambiguous if a date proxy should be the first of the month or the last of the month.')
[docs]class IndexYearMonthGO(_IndexDatetimeGOMixin, IndexYearMonth):
_IMMUTABLE_CONSTRUCTOR = IndexYearMonth
__slots__ = INDEX_GO_LEAF_SLOTS
IndexYearMonth._MUTABLE_CONSTRUCTOR = IndexYearMonthGO
#-------------------------------------------------------------------------------
[docs]class IndexDate(IndexDatetime):
'''A mapping of dates (NumPy :obj:`datetime64[D]`) to positions, immutable and of fixed size.
'''
STATIC = True
_DTYPE = DT64_DAY
__slots__ = ()
[docs] @classmethod
def from_date_range(cls: tp.Type[I],
start: DateInitializer,
stop: DateInitializer,
step: int = 1,
*,
name: tp.Optional[tp.Hashable] = None
) -> I:
'''
Get an IndexDate instance over a range of dates, where start and stop is inclusive.
'''
labels = np.arange(
to_datetime64(start, DT64_DAY),
to_datetime64(stop, DT64_DAY) + TD64_DAY,
np.timedelta64(step, 'D'))
labels.flags.writeable = False
return cls(labels, name=name)
[docs] @classmethod
def from_year_month_range(cls: tp.Type[I],
start: YearMonthInitializer,
stop: YearMonthInitializer,
step: int = 1,
*,
name: tp.Optional[tp.Hashable] = None) -> I:
'''
Get an IndexDate instance over a range of months, where start and end are inclusive.
'''
labels = np.arange(
to_datetime64(start, DT64_MONTH),
to_datetime64(stop, DT64_MONTH) + TD64_MONTH,
step=np.timedelta64(step, 'D'),
dtype=DT64_DAY)
labels.flags.writeable = False
return cls(labels, name=name)
[docs] @classmethod
def from_year_range(cls: tp.Type[I],
start: YearInitializer,
stop: YearInitializer,
step: int = 1,
*,
name: tp.Optional[tp.Hashable] = None
) -> I:
'''
Get an IndexDate instance over a range of years, where start and end are inclusive.
'''
labels = np.arange(
to_datetime64(start, DT64_YEAR),
to_datetime64(stop, DT64_YEAR) + TD64_YEAR,
step=np.timedelta64(step, 'D'),
dtype=DT64_DAY)
labels.flags.writeable = False
return cls(labels, name=name)
[docs]class IndexDateGO(_IndexDatetimeGOMixin, IndexDate):
_IMMUTABLE_CONSTRUCTOR = IndexDate
__slots__ = INDEX_GO_LEAF_SLOTS
IndexDate._MUTABLE_CONSTRUCTOR = IndexDateGO
#-------------------------------------------------------------------------------
[docs]class IndexHour(IndexDatetime):
'''A mapping of hours (NumPy :obj:`datetime64[h]`) to positions, immutable and of fixed size.
'''
STATIC = True
_DTYPE = DT64_H
__slots__ = ()
[docs]class IndexHourGO(_IndexDatetimeGOMixin, IndexHour):
_IMMUTABLE_CONSTRUCTOR = IndexHour
__slots__ = INDEX_GO_LEAF_SLOTS
IndexHour._MUTABLE_CONSTRUCTOR = IndexHourGO
#-------------------------------------------------------------------------------
[docs]class IndexMinute(IndexDatetime):
'''A mapping of minutes (NumPy :obj:`datetime64[m]`) to positions, immutable and of fixed size.
'''
STATIC = True
_DTYPE = DT64_M
__slots__ = ()
[docs]class IndexMinuteGO(_IndexDatetimeGOMixin, IndexMinute):
_IMMUTABLE_CONSTRUCTOR = IndexMinute
__slots__ = INDEX_GO_LEAF_SLOTS
IndexMinute._MUTABLE_CONSTRUCTOR = IndexMinuteGO
#-------------------------------------------------------------------------------
[docs]class IndexSecond(IndexDatetime):
'''A mapping of seconds (NumPy :obj:`datetime64[s]`) to positions, immutable and of fixed size.
'''
STATIC = True
_DTYPE = DT64_S
__slots__ = ()
[docs]class IndexSecondGO(_IndexDatetimeGOMixin, IndexSecond):
_IMMUTABLE_CONSTRUCTOR = IndexSecond
__slots__ = INDEX_GO_LEAF_SLOTS
IndexSecond._MUTABLE_CONSTRUCTOR = IndexSecondGO
#-------------------------------------------------------------------------------
[docs]class IndexMillisecond(IndexDatetime):
'''A mapping of milliseconds (NumPy :obj:`datetime64[ms]`) to positions, immutable and of fixed size.
'''
STATIC = True
_DTYPE = DT64_MS
__slots__ = ()
[docs]class IndexMillisecondGO(_IndexDatetimeGOMixin, IndexMillisecond):
_IMMUTABLE_CONSTRUCTOR = IndexMillisecond
__slots__ = INDEX_GO_LEAF_SLOTS
IndexMillisecond._MUTABLE_CONSTRUCTOR = IndexMillisecondGO
#-------------------------------------------------------------------------------
[docs]class IndexMicrosecond(IndexDatetime):
'''A mapping of microseconds (NumPy :obj:`datetime64[us]`) to positions, immutable and of fixed size.
'''
STATIC = True
_DTYPE = DT64_US
__slots__ = ()
[docs]class IndexMicrosecondGO(_IndexDatetimeGOMixin, IndexMicrosecond):
_IMMUTABLE_CONSTRUCTOR = IndexMicrosecond
__slots__ = INDEX_GO_LEAF_SLOTS
IndexMicrosecond._MUTABLE_CONSTRUCTOR = IndexMicrosecondGO
#-------------------------------------------------------------------------------
[docs]class IndexNanosecond(IndexDatetime):
'''A mapping of nanoseconds (NumPy :obj:`datetime64[ns]`) to positions, immutable and of fixed size.
'''
STATIC = True
_DTYPE = DT64_NS
__slots__ = ()
[docs]class IndexNanosecondGO(_IndexDatetimeGOMixin, IndexNanosecond):
_IMMUTABLE_CONSTRUCTOR = IndexNanosecond
__slots__ = INDEX_GO_LEAF_SLOTS
IndexNanosecond._MUTABLE_CONSTRUCTOR = IndexNanosecondGO
#-------------------------------------------------------------------------------
_DTYPE_TO_CLASS = {cls._DTYPE: cls for cls in (
IndexYear,
IndexYearMonth,
IndexDate,
IndexHour,
IndexMinute,
IndexSecond,
IndexMillisecond,
IndexMicrosecond,
IndexNanosecond
)}
def dtype_to_index_cls(static: bool, dtype: np.dtype) -> tp.Type[Index]:
'''
Given an the class of the Index from which this is valled, as well as the dtype of the resultant array, return the appropriate Index class.
'''
resolved_static = _DTYPE_TO_CLASS.get(dtype)
if resolved_static is not None:
if static:
return resolved_static
return resolved_static._MUTABLE_CONSTRUCTOR #type: ignore
# if origin is a dt64, and dtype is not a dt64, we can go to Index or IndexGO
if static:
return Index
return IndexGO