Detail: IndexYear: Dictionary-Like
Overview: IndexYear: Dictionary-Like
- IndexYear.__contains__(value)[source]
Return True if value in the labels. Will only return True for an exact match to the type of dates stored within.
>>> ix = sf.IndexYear(('1517', '1520', '1518')) >>> ix <IndexYear> 1517 1520 1518 <datetime64[Y]> >>> ix.__contains__('a') ValueError('Error parsing datetime string "a" at position 0') >>> ix = sf.IndexYear(('1517', '1520', '1518')) >>> ix <IndexYear> 1517 1520 1518 <datetime64[Y]> >>> ix.__contains__('1518') True
- IndexYear.__iter__()
Iterate over labels.
>>> ix = sf.IndexYear(('1517', '1520', '1518')) >>> ix <IndexYear> 1517 1520 1518 <datetime64[Y]> >>> tuple(ix.__iter__()) (numpy.datetime64('1517'), numpy.datetime64('1520'), numpy.datetime64('1518')) >>> ix = sf.IndexYear(('1517', '1520', '1518')) >>> ix <IndexYear> 1517 1520 1518 <datetime64[Y]> >>> tuple(ix.__iter__()) (numpy.datetime64('1517'), numpy.datetime64('1520'), numpy.datetime64('1518'))
- IndexYear.__reversed__()
Returns a reverse iterator on the index labels.
>>> ix = sf.IndexYear(('1517', '1520', '1518')) >>> ix <IndexYear> 1517 1520 1518 <datetime64[Y]> >>> tuple(ix.__reversed__()) (numpy.datetime64('1518'), numpy.datetime64('1520'), numpy.datetime64('1517')) >>> ix = sf.IndexYear(('1517', '1520', '1518')) >>> ix <IndexYear> 1517 1520 1518 <datetime64[Y]> >>> tuple(ix.__reversed__()) (numpy.datetime64('1518'), numpy.datetime64('1520'), numpy.datetime64('1517'))
- IndexYear.values
A 1D NumPy array of the values in the
Index
. This array will have the same dtype as the container.>>> ix = sf.IndexYear(('1517', '1520', '1518')) >>> ix <IndexYear> 1517 1520 1518 <datetime64[Y]> >>> ix.values_at_depth(0) ['1517' '1520' '1518']
IndexYear: Constructor | Exporter | Attribute | Method | Dictionary-Like | Display | Selector | Iterator | Operator Binary | Operator Unary | Accessor Values | Accessor Datetime | Accessor String | Accessor Regular Expression | Accessor Hashlib | Accessor Type Clinic