Detail: Frame: Accessor Reduce

Overview: Frame: Accessor Reduce

Frame.reduce.from_func(func, *, fill_value).keys()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_func(func, *, fill_value=nan)

For each Frame, and given a function func that returns either a Series or a Frame, call that function on each Frame.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_func(lambda f: f.iloc[1:]).keys())
('x',)
Frame.reduce.from_func(func, *, fill_value).__iter__()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_func(func, *, fill_value=nan)

For each Frame, and given a function func that returns either a Series or a Frame, call that function on each Frame.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_func(lambda f: f.iloc[1:]).__iter__())
('x',)
Frame.reduce.from_func(func, *, fill_value).items()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_func(func, *, fill_value=nan)

For each Frame, and given a function func that returns either a Series or a Frame, call that function on each Frame.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_func(lambda f: f.iloc[1:]).items())
(('x', <Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>),)
Frame.reduce.from_func(func, *, fill_value).values()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_func(func, *, fill_value=nan)

For each Frame, and given a function func that returns either a Series or a Frame, call that function on each Frame.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_func(lambda f: f.iloc[1:]).values())
(<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>,)
Frame.reduce.from_func(func, *, fill_value).to_frame(*, index, columns, index_constructor, columns_constructor, name, consolidate_blocks)
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_func(func, *, fill_value=nan)

For each Frame, and given a function func that returns either a Series or a Frame, call that function on each Frame.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> f.reduce.from_func(lambda f: f.iloc[1:]).to_frame()
<Frame>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
Frame.reduce.from_map_func(func, *, fill_value).keys()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_map_func(func, *, fill_value=nan)[source]

For each Frame, reduce by applying, for each column, a function that reduces to (0-dimensional) elements, where the column label and function are given as a mapping. Column labels are retained.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_map_func(np.min).keys())
('x',)
Frame.reduce.from_map_func(func, *, fill_value).__iter__()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_map_func(func, *, fill_value=nan)[source]

For each Frame, reduce by applying, for each column, a function that reduces to (0-dimensional) elements, where the column label and function are given as a mapping. Column labels are retained.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_map_func(np.min).__iter__())
('x',)
Frame.reduce.from_map_func(func, *, fill_value).items()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_map_func(func, *, fill_value=nan)[source]

For each Frame, reduce by applying, for each column, a function that reduces to (0-dimensional) elements, where the column label and function are given as a mapping. Column labels are retained.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_map_func(np.min).items())
(('x', <Series: x>
<Index>
a           2
b           False
c           1517-01-01
<<U1>       <object>),)
Frame.reduce.from_map_func(func, *, fill_value).values()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_map_func(func, *, fill_value=nan)[source]

For each Frame, reduce by applying, for each column, a function that reduces to (0-dimensional) elements, where the column label and function are given as a mapping. Column labels are retained.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_map_func(np.min).values())
(<Series: x>
<Index>
a           2
b           False
c           1517-01-01
<<U1>       <object>,)
Frame.reduce.from_map_func(func, *, fill_value).to_frame(*, index, columns, index_constructor, columns_constructor, name, consolidate_blocks)
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_map_func(func, *, fill_value=nan)[source]

For each Frame, reduce by applying, for each column, a function that reduces to (0-dimensional) elements, where the column label and function are given as a mapping. Column labels are retained.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> f.reduce.from_map_func(np.min).to_frame()
<Frame>
<Index> a       b      c               <<U1>
<Index>
x       2       False  1517-01-01
<<U1>   <int64> <bool> <datetime64[D]>
Frame.reduce.from_label_map(func_map, *, fill_value).keys()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_label_map(func_map, *, fill_value=nan)[source]

For Frame, reduce by applying a function to each column, where the column label and function are given as a mapping. Column labels are retained.

Parameters:

func_map – a mapping of column labels to functions.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_label_map({'b': np.min, 'a': np.max}).keys())
('x',)
Frame.reduce.from_label_map(func_map, *, fill_value).__iter__()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_label_map(func_map, *, fill_value=nan)[source]

For Frame, reduce by applying a function to each column, where the column label and function are given as a mapping. Column labels are retained.

Parameters:

func_map – a mapping of column labels to functions.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_label_map({'b': np.min, 'a': np.max}).__iter__())
('x',)
Frame.reduce.from_label_map(func_map, *, fill_value).items()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_label_map(func_map, *, fill_value=nan)[source]

For Frame, reduce by applying a function to each column, where the column label and function are given as a mapping. Column labels are retained.

Parameters:

func_map – a mapping of column labels to functions.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_label_map({'b': np.min, 'a': np.max}).items())
(('x', <Series: x>
<Index>
b           False
a           10
<<U1>       <object>),)
Frame.reduce.from_label_map(func_map, *, fill_value).values()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_label_map(func_map, *, fill_value=nan)[source]

For Frame, reduce by applying a function to each column, where the column label and function are given as a mapping. Column labels are retained.

Parameters:

func_map – a mapping of column labels to functions.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_label_map({'b': np.min, 'a': np.max}).values())
(<Series: x>
<Index>
b           False
a           10
<<U1>       <object>,)
Frame.reduce.from_label_map(func_map, *, fill_value).to_frame(*, index, columns, index_constructor, columns_constructor, name, consolidate_blocks)
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_label_map(func_map, *, fill_value=nan)[source]

For Frame, reduce by applying a function to each column, where the column label and function are given as a mapping. Column labels are retained.

Parameters:

func_map – a mapping of column labels to functions.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> f.reduce.from_label_map({'b': np.min, 'a': np.max}).to_frame()
<Frame>
<Index> b      a       <<U1>
<Index>
x       False  10
<<U1>   <bool> <int64>
Frame.reduce.from_label_pair_map(func_map, *, fill_value).keys()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_label_pair_map(func_map, *, fill_value=nan)[source]

For Frame, reduce by applying a function to a column and assigning the result a new label. Functions are provided as values in a mapping, where the key is tuple of source label, destination label.

Parameters:

func_map – a mapping of pairs of source label, destination label, to a function.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_label_pair_map({('b', 'b-min'): np.min, ('b', 'b-max'): np.max}).keys())
('x',)
Frame.reduce.from_label_pair_map(func_map, *, fill_value).__iter__()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_label_pair_map(func_map, *, fill_value=nan)[source]

For Frame, reduce by applying a function to a column and assigning the result a new label. Functions are provided as values in a mapping, where the key is tuple of source label, destination label.

Parameters:

func_map – a mapping of pairs of source label, destination label, to a function.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_label_pair_map({('b', 'b-min'): np.min, ('b', 'b-max'): np.max}).__iter__())
('x',)
Frame.reduce.from_label_pair_map(func_map, *, fill_value).items()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_label_pair_map(func_map, *, fill_value=nan)[source]

For Frame, reduce by applying a function to a column and assigning the result a new label. Functions are provided as values in a mapping, where the key is tuple of source label, destination label.

Parameters:

func_map – a mapping of pairs of source label, destination label, to a function.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_label_pair_map({('b', 'b-min'): np.min, ('b', 'b-max'): np.max}).items())
(('x', <Series: x>
<Index>
b-min       False
b-max       True
<<U5>       <bool>),)
Frame.reduce.from_label_pair_map(func_map, *, fill_value).values()
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_label_pair_map(func_map, *, fill_value=nan)[source]

For Frame, reduce by applying a function to a column and assigning the result a new label. Functions are provided as values in a mapping, where the key is tuple of source label, destination label.

Parameters:

func_map – a mapping of pairs of source label, destination label, to a function.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> tuple(f.reduce.from_label_pair_map({('b', 'b-min'): np.min, ('b', 'b-max'): np.max}).values())
(<Series: x>
<Index>
b-min       False
b-max       True
<<U5>       <bool>,)
Frame.reduce.from_label_pair_map(func_map, *, fill_value).to_frame(*, index, columns, index_constructor, columns_constructor, name, consolidate_blocks)
Frame.reduce

Return a ReduceAligned interface, permitting function application per column or on entire containers.

ReduceDispatchAligned.from_label_pair_map(func_map, *, fill_value=nan)[source]

For Frame, reduce by applying a function to a column and assigning the result a new label. Functions are provided as values in a mapping, where the key is tuple of source label, destination label.

Parameters:

func_map – a mapping of pairs of source label, destination label, to a function.

>>> f = sf.Frame.from_fields(((10, 2, 8, 3), (False, True, True, False), ('1517-01-01', '1517-04-01', '1517-12-31', '1517-06-30')), index=sf.IndexHierarchy.from_product((0, 1), ('p', 'q')), columns=('a', 'b', 'c'), dtypes=dict(c=np.datetime64), name='x')
>>> f
<Frame: x>
<Index>                a       b      c               <<U1>
<IndexHierarchy>
0                p     10      False  1517-01-01
0                q     2       True   1517-04-01
1                p     8       True   1517-12-31
1                q     3       False  1517-06-30
<int64>          <<U1> <int64> <bool> <datetime64[D]>
>>> f.reduce.from_label_pair_map({('b', 'b-min'): np.min, ('b', 'b-max'): np.max}).to_frame()
<Frame>
<Index> b-min  b-max  <<U5>
<Index>
x       False  True
<<U1>   <bool> <bool>

Frame: Constructor | Exporter | Attribute | Method | Dictionary-Like | Display | Assignment | Selector | Iterator | Operator Binary | Operator Unary | Accessor Values | Accessor Datetime | Accessor String | Accessor Transpose | Accessor Fill Value | Accessor Regular Expression | Accessor Hashlib | Accessor Type Clinic | Accessor Reduce