Detail: Batch: Attribute
- Batch.STATIC = True
>>> bt = sf.Batch((('i', sf.Frame(np.arange(6).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='x')), ('j', sf.Frame(np.arange(40, 46).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='v')))) >>> bt.STATIC True
- Batch.T
Transpose. Return a
Frame
withindex
ascolumns
and vice versa.>>> bt = sf.Batch((('i', sf.Frame(np.arange(6).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='x')), ('j', sf.Frame(np.arange(40, 46).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='v')))) >>> bt.T <Batch max_workers=None>
- Batch.memory
Return a
MemoryDisplay
, providing the size in memory of this object. For compound containers, component sizes will also be provided. Size can be interpreted through six combinations of three configurations:L: Local: memory ignoring referenced array data provided via views. LM: Local Materialized: memory where arrays that are locally owned report their byte payload LMD: Local Materialized Data: locally owned memory of arrays byte payloads, excluding all other components
R: Referenced: memory including referenced array data provided via views RM: Referenced Materialized: memory where arrays that are locally owned or referenced report their byte payload RMD: Referenced Materialized Data: localy owned and referenced array byte payloads, excluding all other components
>>> bt = sf.Batch((('i', sf.Frame(np.arange(6).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='x')), ('j', sf.Frame(np.arange(40, 46).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='v')))) >>> bt.memory L Lu LM LMu LMD LMDu R Ru RM RMu RMD RMDu Total 4.98 KB 5.1 KB 3.85 KB 13.09 KB 5.18 KB 3.93 KB
- Batch.name
A hashable label attached to this container.
- Returns:
Hashable
>>> bt = sf.Batch((('i', sf.Frame(np.arange(6).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='x')), ('j', sf.Frame(np.arange(40, 46).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='v')))) >>> bt.name
- Batch.shapes
A
Series
describing the shape of each iteratedFrame
.- Returns:
tp.Tuple[int]
>>> bt = sf.Batch((('i', sf.Frame(np.arange(6).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='x')), ('j', sf.Frame(np.arange(40, 46).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='v')))) >>> bt.shapes <Series: shape> <Index> i (3, 2) j (3, 2) <<U1> <object>
- Batch.via_container
Return a new Batch with all values wrapped in either a
Frame
orSeries
.>>> bt = sf.Batch((('i', sf.Frame(np.arange(6).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='x')), ('j', sf.Frame(np.arange(40, 46).reshape(3,2), index=('p', 'q', 'r'), columns=('a', 'b'), name='v')))) >>> bt.via_container <Batch max_workers=None>
Batch: Constructor | Exporter | Attribute | Method | Dictionary-Like | Display | Selector | Operator Binary | Operator Unary | Accessor Values | Accessor Datetime | Accessor String | Accessor Transpose | Accessor Fill Value | Accessor Regular Expression | Accessor Hashlib | Accessor Type Clinic | Accessor Reduce