Source code for static_frame.core.frame

from __future__ import annotations

import csv
import json
import pickle
import sqlite3
from collections import deque
from collections.abc import Set
from copy import deepcopy
from dataclasses import is_dataclass
from functools import partial
from io import BytesIO
from io import StringIO
from itertools import chain
from itertools import product
from itertools import zip_longest
from operator import itemgetter

import numpy as np
import typing_extensions as tp
from arraykit import array_to_tuple_array
from arraykit import array_to_tuple_iter
from arraykit import column_1d_filter
from arraykit import delimited_to_arrays
from arraykit import first_true_2d
from arraykit import name_filter
from arraykit import resolve_dtype
from arraykit import resolve_dtype_iter
from arraykit import split_after_count
from numpy.ma import MaskedArray

from static_frame.core.archive_npy import NPYFrameConverter
from static_frame.core.archive_npy import NPZFrameConverter
from static_frame.core.assign import Assign
from static_frame.core.container import ContainerOperand
# from static_frame.core.container_util import pandas_version_under_1
from static_frame.core.container_util import ContainerMap
from static_frame.core.container_util import MessagePackElement
from static_frame.core.container_util import apex_to_name
from static_frame.core.container_util import array_from_value_iter
from static_frame.core.container_util import axis_window_items
from static_frame.core.container_util import bloc_key_normalize
from static_frame.core.container_util import constructor_from_optional_constructors
from static_frame.core.container_util import df_slice_to_arrays
from static_frame.core.container_util import frame_to_frame
from static_frame.core.container_util import get_col_dtype_factory
from static_frame.core.container_util import get_col_fill_value_factory
from static_frame.core.container_util import index_constructor_empty
from static_frame.core.container_util import index_from_optional_constructor
from static_frame.core.container_util import index_from_optional_constructors
from static_frame.core.container_util import index_many_concat
from static_frame.core.container_util import index_many_to_one
from static_frame.core.container_util import is_fill_value_factory_initializer
from static_frame.core.container_util import iter_component_signature_bytes
from static_frame.core.container_util import key_to_ascending_key
from static_frame.core.container_util import matmul
from static_frame.core.container_util import pandas_to_numpy
from static_frame.core.container_util import prepare_values_for_lex
from static_frame.core.container_util import rehierarch_from_index_hierarchy
from static_frame.core.container_util import rehierarch_from_type_blocks
from static_frame.core.container_util import sort_index_for_order
from static_frame.core.display import Display
from static_frame.core.display import DisplayActive
from static_frame.core.display import DisplayHeader
from static_frame.core.display_config import DisplayConfig
from static_frame.core.display_config import DisplayFormats
from static_frame.core.doc_str import doc_inject
from static_frame.core.doc_str import doc_update
from static_frame.core.exception import AxisInvalid
from static_frame.core.exception import ErrorInitColumns
from static_frame.core.exception import ErrorInitFrame
from static_frame.core.exception import ErrorInitIndex
from static_frame.core.exception import ErrorInitIndexNonUnique
from static_frame.core.exception import GrowOnlyInvalid
from static_frame.core.exception import InvalidFillValue
from static_frame.core.exception import RelabelInvalid
from static_frame.core.index import Index
from static_frame.core.index import IndexGO
from static_frame.core.index import _index_initializer_needs_init
from static_frame.core.index import immutable_index_filter
from static_frame.core.index_auto import IndexAutoFactory
from static_frame.core.index_auto import IndexDefaultConstructorFactory
from static_frame.core.index_auto import TIndexInitOrAuto
from static_frame.core.index_auto import TRelabelInput
from static_frame.core.index_base import IndexBase
from static_frame.core.index_correspondence import IndexCorrespondence
from static_frame.core.index_hierarchy import IndexHierarchy
from static_frame.core.index_hierarchy import IndexHierarchyGO
from static_frame.core.join import join
from static_frame.core.metadata import JSONMeta
from static_frame.core.node_dt import InterfaceDatetime
from static_frame.core.node_fill_value import InterfaceFillValue
from static_frame.core.node_fill_value import InterfaceFillValueGO
from static_frame.core.node_iter import IterNodeApplyType
from static_frame.core.node_iter import IterNodeAxis
from static_frame.core.node_iter import IterNodeAxisElement
from static_frame.core.node_iter import IterNodeConstructorAxis
from static_frame.core.node_iter import IterNodeDepthLevelAxis
from static_frame.core.node_iter import IterNodeGroupAxis
from static_frame.core.node_iter import IterNodeGroupOtherReducible
from static_frame.core.node_iter import IterNodeWindowReducible
from static_frame.core.node_re import InterfaceRe
from static_frame.core.node_selector import InterfaceAssignQuartet
from static_frame.core.node_selector import InterfaceConsolidate
from static_frame.core.node_selector import InterfaceFrameAsType
from static_frame.core.node_selector import InterfaceGetItemBLoc
from static_frame.core.node_selector import InterfaceSelectTrio
from static_frame.core.node_selector import InterGetItemILocCompoundReduces
from static_frame.core.node_selector import InterGetItemLocCompoundReduces
from static_frame.core.node_selector import TFrameOrSeries
from static_frame.core.node_str import InterfaceString
from static_frame.core.node_transpose import InterfaceTranspose
from static_frame.core.node_values import InterfaceValues
from static_frame.core.pivot import pivot_derive_constructors
from static_frame.core.pivot import pivot_index_map
from static_frame.core.protocol_dfi import DFIDataFrame
from static_frame.core.rank import RankMethod
from static_frame.core.rank import rank_1d
from static_frame.core.series import Series
from static_frame.core.store_filter import STORE_FILTER_DEFAULT
from static_frame.core.store_filter import StoreFilter
from static_frame.core.style_config import STYLE_CONFIG_DEFAULT
from static_frame.core.style_config import StyleConfig
from static_frame.core.style_config import style_config_css_factory
from static_frame.core.type_blocks import TypeBlocks
from static_frame.core.type_blocks import group_match
from static_frame.core.type_blocks import group_sorted
from static_frame.core.util import BOOL_TYPES
from static_frame.core.util import CONTINUATION_TOKEN_INACTIVE
from static_frame.core.util import DEFAULT_FAST_SORT_KIND
from static_frame.core.util import DEFAULT_SORT_KIND
from static_frame.core.util import DEFAULT_STABLE_SORT_KIND
from static_frame.core.util import DT64_NS
from static_frame.core.util import DTU_PYARROW
from static_frame.core.util import DTYPE_BOOL
from static_frame.core.util import DTYPE_DATETIME_KIND
from static_frame.core.util import DTYPE_FLOAT_DEFAULT
from static_frame.core.util import DTYPE_INT_DEFAULT
from static_frame.core.util import DTYPE_NA_KINDS
from static_frame.core.util import DTYPE_OBJECT
from static_frame.core.util import DTYPE_OBJECT_KIND
from static_frame.core.util import DTYPE_TIMEDELTA_KIND
from static_frame.core.util import EMPTY_ARRAY
from static_frame.core.util import FILL_VALUE_DEFAULT
from static_frame.core.util import FRAME_INITIALIZER_DEFAULT
from static_frame.core.util import INT_TYPES
from static_frame.core.util import KEY_MULTIPLE_TYPES
from static_frame.core.util import NAME_DEFAULT
from static_frame.core.util import NULL_SLICE
from static_frame.core.util import STORE_LABEL_DEFAULT
from static_frame.core.util import STRING_TYPES
from static_frame.core.util import IterNodeType
from static_frame.core.util import Join
from static_frame.core.util import JSONFilter
from static_frame.core.util import ManyToOneType
from static_frame.core.util import TBlocKey
from static_frame.core.util import TBoolOrBools
from static_frame.core.util import TCallableAny
from static_frame.core.util import TCallableOrCallableMap
from static_frame.core.util import TDepthLevel
from static_frame.core.util import TDtypeSpecifier
from static_frame.core.util import TDtypesSpecifier
from static_frame.core.util import TFrameInitializer
from static_frame.core.util import TILocSelector
from static_frame.core.util import TILocSelectorCompound
from static_frame.core.util import TILocSelectorMany
from static_frame.core.util import TILocSelectorOne
from static_frame.core.util import TIndexCtor
from static_frame.core.util import TIndexCtorSpecifier
from static_frame.core.util import TIndexCtorSpecifiers
from static_frame.core.util import TIndexHierarchyCtor
from static_frame.core.util import TIndexInitializer
from static_frame.core.util import TIndexSpecifier
from static_frame.core.util import TKeyOrKeys
from static_frame.core.util import TLabel
from static_frame.core.util import TLocSelector
from static_frame.core.util import TLocSelectorCompound
from static_frame.core.util import TLocSelectorMany
from static_frame.core.util import TName
from static_frame.core.util import TPathSpecifier
from static_frame.core.util import TPathSpecifierOrBinaryIO
from static_frame.core.util import TPathSpecifierOrTextIO
from static_frame.core.util import TPathSpecifierOrTextIOOrIterator
from static_frame.core.util import TSortKinds
from static_frame.core.util import TTupleCtor
from static_frame.core.util import TUFunc
from static_frame.core.util import WarningsSilent
from static_frame.core.util import argmax_2d
from static_frame.core.util import argmin_2d
from static_frame.core.util import array_to_duplicated
from static_frame.core.util import blocks_to_array_2d
from static_frame.core.util import concat_resolved
from static_frame.core.util import dtype_from_element
from static_frame.core.util import dtype_kind_to_na
from static_frame.core.util import dtype_to_fill_value
from static_frame.core.util import file_like_manager
from static_frame.core.util import full_for_fill
from static_frame.core.util import get_tuple_constructor
from static_frame.core.util import iloc_to_insertion_iloc
from static_frame.core.util import is_callable_or_mapping
from static_frame.core.util import is_dtype_specifier
from static_frame.core.util import isfalsy_array
from static_frame.core.util import isna_array
from static_frame.core.util import iterable_to_array_1d
from static_frame.core.util import iterable_to_array_nd
from static_frame.core.util import key_normalize
from static_frame.core.util import path_filter
from static_frame.core.util import ufunc_unique
from static_frame.core.util import ufunc_unique1d
from static_frame.core.util import ufunc_unique_enumerated
from static_frame.core.util import write_optional_file

if tp.TYPE_CHECKING:
    import pandas  # pragma: no cover
    import pyarrow  # pragma: no cover
    from xarray import Dataset  # pragma: no cover

    from static_frame.core.reduce import ReduceDispatchAligned  # pylint: disable=W0611,C0412 #pragma: no cover

    TNDArrayAny = np.ndarray[tp.Any, tp.Any] #pragma: no cover
    TDtypeAny = np.dtype[tp.Any] #pragma: no cover
    TOptionalArrayList = tp.Optional[tp.List[TNDArrayAny]] #pragma: no cover
    TIndexAny = Index[tp.Any] #pragma: no cover

TSeriesAny = Series[tp.Any, tp.Any]

def _NA_BLOCKS_CONSTRCTOR(shape: tp.Tuple[int, int]) -> None: ...

TVIndex = tp.TypeVar('TVIndex', bound=IndexBase, default=tp.Any) # pylint: disable=E1123
TVColumns = tp.TypeVar('TVColumns', bound=IndexBase, default=tp.Any) # pylint: disable=E1123
TVDtypes = tp.TypeVarTuple('TVDtypes', # pylint: disable=E1123
        default=tp.Unpack[tp.Tuple[tp.Any, ...]])

[docs] class Frame(ContainerOperand, tp.Generic[TVIndex, TVColumns, tp.Unpack[TVDtypes]]): '''A two-dimensional ordered, labelled collection, immutable and of fixed size. ''' __slots__ = ( '__weakref__', '_blocks', '_columns', '_index', '_name', ) _blocks: TypeBlocks _columns: IndexBase _index: IndexBase _name: TLabel _COLUMNS_CONSTRUCTOR = Index _COLUMNS_HIERARCHY_CONSTRUCTOR = IndexHierarchy _NDIM: int = 2 #--------------------------------------------------------------------------- # constructors
[docs] @classmethod def from_series(cls, series: TSeriesAny, *, name: TLabel = None, columns_constructor: TIndexCtorSpecifier = None, ) -> tp.Self: ''' Frame constructor from a Series: Args: series: A Series instance, to be realized as single column, with the column label taken from the `name` attribute. ''' if not isinstance(series, Series): raise RuntimeError('from_series must be called with a Series') return cls(TypeBlocks.from_blocks(series.values), index=series.index, columns=(series.name,), name=name, columns_constructor=columns_constructor, own_data=True, own_index=True, )
@classmethod def _from_zero_size_shape(cls, *, index: tp.Optional[TIndexInitializer] = None, columns: tp.Optional[TIndexInitializer] = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, own_index: bool = False, own_columns: bool = False ) -> tp.Self: ''' Create a zero-sized Frame based on ``index`` or ``columns`` (though not both of size). ''' if own_columns: columns_final = columns else: columns_final = index_from_optional_constructor( columns if columns is not None else (), default_constructor=cls._COLUMNS_CONSTRUCTOR, explicit_constructor=columns_constructor ) if own_index: index_final = index else: index_final = index_from_optional_constructor( index if index is not None else (), default_constructor=Index, explicit_constructor=index_constructor ) shape = (len(index_final), len(columns_final)) # type: ignore if shape[0] > 0 and shape[1] > 0: raise ErrorInitFrame('Cannot create zero-sized Frame from sized index and columns.') get_col_dtype = ((lambda x: None) if dtypes is None else get_col_dtype_factory(dtypes, columns)) #type: ignore return cls(TypeBlocks.from_zero_size_shape(shape, get_col_dtype), index=index_final, columns=columns_final, name=name, own_data=True, own_index=True, own_columns=True, )
[docs] @classmethod def from_element(cls, element: tp.Any, *, index: TIndexInitializer, columns: TIndexInitializer, dtype: TDtypeSpecifier = None, name: TLabel = None, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, own_index: bool = False, own_columns: bool = False ) -> tp.Self: ''' Create a Frame from an element, i.e., a single value stored in a single cell. Both ``index`` and ``columns`` are required, and cannot be specified with ``IndexAutoFactory``. ''' if own_columns: columns_final = columns else: columns_final = index_from_optional_constructor(columns, default_constructor=cls._COLUMNS_CONSTRUCTOR, explicit_constructor=columns_constructor ) if own_index: index_final = index else: index_final = index_from_optional_constructor(index, default_constructor=Index, explicit_constructor=index_constructor ) shape = (len(index_final), len(columns_final)) #type: ignore dtype = None if dtype is None else np.dtype(dtype) array = full_for_fill( dtype, shape, element, resolve_fill_value_dtype=dtype is None, # True means derive from fill value ) array.flags.writeable = False return cls(TypeBlocks.from_blocks(array), index=index_final, columns=columns_final, name=name, own_data=True, own_index=True, own_columns=True, )
[docs] @classmethod def from_elements(cls, elements: tp.Iterable[tp.Any], *, index: TIndexInitOrAuto = None, columns: TIndexInitOrAuto = None, dtype: TDtypeSpecifier = None, name: TLabel = None, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, own_index: bool = False, own_columns: bool = False ) -> tp.Self: ''' Create a Frame from an iterable of elements, to be formed into a ``Frame`` with a single column. ''' # will be immutable array, _ = iterable_to_array_1d(elements, dtype=dtype) #----------------------------------------------------------------------- if own_columns: columns_final = columns col_count = len(columns_final) #type: ignore elif index_constructor_empty(columns): col_count = 1 columns_final = IndexAutoFactory.from_optional_constructor( col_count, # default to one colmns default_constructor=cls._COLUMNS_CONSTRUCTOR, explicit_constructor=columns_constructor ) else: columns_final = index_from_optional_constructor(columns, default_constructor=cls._COLUMNS_CONSTRUCTOR, explicit_constructor=columns_constructor ) col_count = len(columns_final) #----------------------------------------------------------------------- row_count = len(array) if own_index: index_final = index elif index_constructor_empty(index): index_final = IndexAutoFactory.from_optional_constructor( row_count, default_constructor=Index, explicit_constructor=index_constructor ) else: index_final = index_from_optional_constructor(index, default_constructor=Index, explicit_constructor=index_constructor ) #----------------------------------------------------------------------- if col_count > 1: array = np.tile(array.reshape((row_count, 1)), (1, col_count)) array.flags.writeable = False return cls(TypeBlocks.from_blocks(array), index=index_final, columns=columns_final, name=name, own_data=True, own_index=True, own_columns=True, )
#---------------------------------------------------------------------------
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_concat(cls: tp.Type[tp.Self], frames: tp.Iterable[tp.Union[TFrameAny, TSeriesAny]], *, axis: int = 0, union: bool = True, index: TIndexInitOrAuto = None, columns: TIndexInitOrAuto = None, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, name: TName = None, fill_value: tp.Any = np.nan, consolidate_blocks: bool = False, ) -> tp.Self: ''' Concatenate multiple :obj:`Frame` or :obj:`Series` into a new :obj:`Frame`. If index or columns are provided and appropriately sized, the resulting :obj:`Frame` will use those indices. If the axis along concatenation (index for axis 0, columns for axis 1) is unique after concatenation, it will be preserved; otherwise, a new index or an :obj:`IndexAutoFactory` must be supplied. Args: frames: Iterable of Frames. axis: Integer specifying 0 to concatenate supplied Frames vertically (aligning on columns), 1 to concatenate horizontally (aligning on rows). union: If True, the union of the aligned indices is used; if False, the intersection is used. index: Optionally specify a new index. columns: Optionally specify new columns. index_constructor: Optionally apply a constructor to the derived or passed labels. columns_constructor: Optionally apply a constructor to the derived or passed labels. {name} {consolidate_blocks} Returns: :obj:`static_frame.Frame` ''' frame_seq: tp.List[TFrameAny] = [] for f in frames: if isinstance(f, Frame): frame_seq.append(f) else: # NOTE: we need to determine if the name attr of the Series is to be used as a label; providing IndexAutoFactory will forbid the usage of the name attr; the name attr is assigned to index if axis is 0, to columns if axis is 1. If index/columns is provided, force Series.to_frame() to not try to use the name attr. index_to_frame = None columns_to_frame = None index_constructor_to_frame = index_constructor columns_constructor_to_frame = columns_constructor # vstack, Series will be row if axis == 0: if index is not None: # if we have an index, do not use name index_to_frame = IndexAutoFactory index_constructor_to_frame = None # hstack, Series will be col if axis == 1: if columns is not None: # if we have columns, do not use name columns_to_frame = IndexAutoFactory columns_constructor_to_frame = None frame_seq.append( f.to_frame(axis, index = index_to_frame, index_constructor=index_constructor_to_frame, columns=columns_to_frame, columns_constructor=columns_constructor_to_frame, )) own_index = False own_columns = False if not frame_seq: return cls( index=index, columns=columns, name=name, own_columns=own_columns, own_index=own_index, index_constructor=index_constructor, columns_constructor=columns_constructor, ) if axis == 1: # stacks columns (extends rows horizontally) # index can be the same, columns must be redefined if not unique if columns is IndexAutoFactory: columns = None # let default creation happen elif columns is None: try: columns = index_many_concat( (f._columns for f in frame_seq), cls._COLUMNS_CONSTRUCTOR, columns_constructor, ) except ErrorInitIndexNonUnique as e: raise ErrorInitFrame('Column names after horizontal concatenation are not unique; supply a columns argument or IndexAutoFactory.') from e own_columns = True if index is IndexAutoFactory: raise ErrorInitFrame('for axis 1 concatenation, index must be used for reindexing row alignment: IndexAutoFactory is not permitted') elif index is None: index = index_many_to_one( (f._index for f in frame_seq), Index, ManyToOneType.UNION if union else ManyToOneType.INTERSECT, index_constructor, ) own_index = True def blocks() -> tp.Iterator[TNDArrayAny]: for frame in frame_seq: if not frame.index.equals(index): frame = frame.reindex(index=index, # type: ignore fill_value=fill_value, check_equals=False, ) for block in frame._blocks._blocks: yield block elif axis == 0: # stacks rows (extends columns vertically) if index is IndexAutoFactory: index = None # let default creation happen elif index is None: try: index = index_many_concat( (f._index for f in frame_seq), Index, index_constructor, ) except ErrorInitIndexNonUnique as e: raise ErrorInitFrame('Index names after vertical concatenation are not unique; supply an index argument or IndexAutoFactory.') from e own_index = True if columns is IndexAutoFactory: raise ErrorInitFrame('for axis 0 concatenation, columns must be used for reindexing and column alignment: IndexAutoFactory is not permitted') elif columns is None: columns = index_many_to_one( (f._columns for f in frame_seq), cls._COLUMNS_CONSTRUCTOR, ManyToOneType.UNION if union else ManyToOneType.INTERSECT, columns_constructor, ) own_columns = True def blocks() -> tp.Iterator[TNDArrayAny]: type_blocks = [] previous_frame: tp.Optional[TFrameAny] = None block_compatible = True reblock_compatible = True for frame in frame_seq: if not frame.columns.equals(columns): frame = frame.reindex(columns=columns, # type: ignore fill_value=fill_value, check_equals=False, ) type_blocks.append(frame._blocks) # column size is all the same by this point if previous_frame is not None: # after the first if block_compatible: block_compatible &= frame._blocks.block_compatible( previous_frame._blocks, axis=1) # only compare columns if reblock_compatible: reblock_compatible &= frame._blocks.reblock_compatible( previous_frame._blocks) previous_frame = frame yield from TypeBlocks.vstack_blocks_to_blocks( type_blocks=type_blocks, block_compatible=block_compatible, reblock_compatible=reblock_compatible, ) else: raise AxisInvalid(f'no support for {axis}') block_gen: tp.Callable[..., tp.Iterator[TNDArrayAny]] if consolidate_blocks: block_gen = lambda: TypeBlocks.consolidate_blocks(blocks()) else: block_gen = blocks return cls(TypeBlocks.from_blocks(block_gen()), index=index, columns=columns, name=name, own_data=True, own_columns=own_columns, own_index=own_index, index_constructor=index_constructor, columns_constructor=columns_constructor, )
[docs] @classmethod def from_concat_items(cls, items: tp.Iterable[tp.Tuple[TLabel, tp.Union[TFrameAny, TSeriesAny]]], *, axis: int = 0, union: bool = True, name: TName = None, fill_value: tp.Any = np.nan, index_constructor: tp.Optional[TIndexCtorSpecifier] = None, columns_constructor: tp.Optional[TIndexCtorSpecifier] = None, consolidate_blocks: bool = False, ) -> tp.Self: ''' Produce a :obj:`Frame` with a hierarchical index from an iterable of pairs of labels, :obj:`Frame`. The :obj:`IndexHierarchy` is formed from the provided labels and the :obj:`Index` if each :obj:`Frame`. Args: items: Iterable of pairs of label, :obj:`Frame` axis: union: name: fill_value: index_constructor: columns_constructor: consolidate_blocks: ''' frames = [] def gen() -> tp.Iterator[tp.Tuple[TLabel, IndexBase]]: # default index construction does not yield elements, but instead yield Index objects for more efficient IndexHierarchy construction yield_elements = True if axis == 0 and (index_constructor is None or isinstance(index_constructor, IndexDefaultConstructorFactory)): yield_elements = False elif axis == 1 and (columns_constructor is None or isinstance(columns_constructor, IndexDefaultConstructorFactory)): yield_elements = False for label, frame in items: # must normalize Series here to avoid down-stream confusion if isinstance(frame, Series): frame = frame.to_frame(axis) frames.append(frame) if axis == 0: if yield_elements: yield from product((label,), frame._index) # pyright: ignore else: yield label, frame._index elif axis == 1: if yield_elements: yield from product((label,), frame._columns) # pyright: ignore else: yield label, frame._columns # we have already evaluated AxisInvalid if axis == 0: ih = index_from_optional_constructor( gen(), default_constructor=IndexHierarchy.from_index_items, explicit_constructor=index_constructor, ) if columns_constructor is not None: raise NotImplementedError('using columns_constructor for axis 0 not yet supported') kwargs = dict(index=ih) elif axis == 1: # ih = cls._COLUMNS_HIERARCHY_CONSTRUCTOR.from_index_items(gen()) ih = index_from_optional_constructor( gen(), default_constructor=cls._COLUMNS_HIERARCHY_CONSTRUCTOR.from_index_items, explicit_constructor=columns_constructor, ) if index_constructor is not None: raise NotImplementedError('using index_constructor for axis 1 not yet supported') kwargs = dict(columns=ih) else: raise AxisInvalid(f'invalid axis: {axis}') return cls.from_concat(frames, axis=axis, union=union, name=name, fill_value=fill_value, consolidate_blocks=consolidate_blocks, **kwargs # type: ignore )
[docs] @classmethod def from_overlay(cls, containers: tp.Iterable[TFrameAny], *, index: tp.Optional[TIndexInitializer] = None, columns: tp.Optional[TIndexInitializer] = None, union: bool = True, name: TName = None, func: tp.Callable[[TNDArrayAny], TNDArrayAny] = isna_array, fill_value: tp.Any = FILL_VALUE_DEFAULT, ) -> tp.Self: ''' Return a new :obj:`Frame` made by overlaying containers, filling in values with aligned values from subsequent containers. Values are filled based on a passed function that must return a Boolean array. By default, that function is `isna_array`, returning True for missing values (NaN and None). Args: containers: Iterable of :obj:`Frame`. index: An optional :obj:`Index`, :obj:`IndexHierarchy`, or index initializer, to be used as the index upon which all containers are aligned. :obj:`IndexAutoFactory` is not supported. columns: An optional :obj:`Index`, :obj:`IndexHierarchy`, or columns initializer, to be used as the columns upon which all containers are aligned. :obj:`IndexAutoFactory` is not supported. union: If True, and no ``index`` or ``columns`` argument is supplied, a union index or columns from ``containers`` will be used; if False, the intersection index or columns will be used. name: func: A function that takes an array and returns a same-sized Boolean array, where True indicates availability for insertion. ''' if not hasattr(containers, '__len__'): containers = tuple(containers) # exhaust a generator if index is None: index = index_many_to_one( (c.index for c in containers), cls_default=Index, many_to_one_type=ManyToOneType.UNION if union else ManyToOneType.INTERSECT, ) else: index = index_from_optional_constructor(index, default_constructor=Index ) if columns is None: columns = index_many_to_one( (c.columns for c in containers), cls_default=cls._COLUMNS_CONSTRUCTOR, many_to_one_type=ManyToOneType.UNION if union else ManyToOneType.INTERSECT, ) else: columns = index_from_optional_constructor(columns, default_constructor=cls._COLUMNS_CONSTRUCTOR) fill_arrays = {} # NOTE: we will hash to NaN and NaT, but can assume we are using the same instance containers_iter = iter(containers) container = next(containers_iter) if fill_value is FILL_VALUE_DEFAULT: fill_value_reindex = dtype_kind_to_na(container._blocks._index.dtype.kind) else: fill_value_reindex = fill_value # just pass along even if FillValueAuto # get the first container post = frame_to_frame(container, cls).reindex( index=index, columns=columns, fill_value=fill_value_reindex, own_index=True, own_columns=True, ) # we need a fill value that will be identified as a missing value by ``func`` on subsequent iterations, otherwise this fill value will not be identified as fillable get_col_fill_value: tp.Callable[..., tp.Any] if fill_value is FILL_VALUE_DEFAULT: get_col_fill_value = lambda _, dtype: dtype_kind_to_na(dtype.kind) else: get_col_fill_value = get_col_fill_value_factory(fill_value, columns) # dtype column mapping will not change dtypes = post.dtypes post_blocks = post._blocks for container in containers_iter: values = [] index_match = container._index.equals(index) # iterate over reindexed, full dtypes; some containers will not have columns for col_count, (col, dtype_at_col) in enumerate(dtypes.items()): if col not in container: # get fill value based on previous container fill_value = get_col_fill_value(col_count, dtype_at_col) # store fill_arrays for re-use if fill_value not in fill_arrays: array = np.full(len(index), fill_value) array.flags.writeable = False fill_arrays[fill_value] = array array = fill_arrays[fill_value] elif index_match: iloc_column_key = container._columns._loc_to_iloc(col) array = container._blocks._extract_array_column(iloc_column_key) # type: ignore else: # need to reindex col_series = container[col] fill_value = get_col_fill_value(col_count, col_series.dtype) array = col_series.reindex(index, fill_value=fill_value).values array.flags.writeable = False values.append(array) # apply values only where missing post_blocks = post_blocks.fill_missing_by_values(values, func=func) if not post_blocks.boolean_apply_any(func): break return cls(post_blocks, index=index, columns=columns, name=name, own_data=True, own_index=True, own_columns=True, )
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_records(cls, records: tp.Iterable[tp.Any], *, index: tp.Optional[TIndexInitializer] = None, columns: tp.Optional[TIndexInitializer] = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, own_index: bool = False, own_columns: bool = False ) -> tp.Self: '''Construct a :obj:`Frame` from an iterable of rows, where rows are defined as iterables, including tuples, lists, and arrays. If each row is a NamedTuple, and ``columns`` is not provided, column names will be derived from the NamedTuple fields. Supplying ``dtypes`` will significantly improve performance, as otherwise columnar array types must be derived by element-wise examination. For records defined as ``Series``, use ``Frame.from_concat``; for records defined as dictionary, use ``Frame.from_dict_records``; for creating a ``Frame`` from a single dictionary, where keys are column labels and values are columns, use ``Frame.from_dict``. Args: records: Iterable of row values, where row values are arrays, tuples, lists, or namedtuples. For dictionary records, use ``Frame.from_dict_records``. index: Optionally provide an iterable of index labels, equal in length to the number of records. If a generator, this value will not be evaluated until after records are loaded. columns: Optionally provide an iterable of column labels, equal in length to the number of elements in a row. {dtypes} {name} {consolidate_blocks} Returns: :obj:`Frame` ''' # if records is np; we can just pass it to constructor, as is already a consolidated type if records.__class__ is np.ndarray: if dtypes is not None: raise ErrorInitFrame('specifying dtypes when using NP records is not permitted') return cls(records, index=index, columns=columns, index_constructor=index_constructor, columns_constructor=columns_constructor, own_index=own_index, own_columns=own_columns, name=name, ) rows: tp.Sequence[tp.Any] if not hasattr(records, '__len__'): # might be a generator; must convert to sequence rows = list(records) else: # could be a sequence, or something like a dict view rows = records # type: ignore row_count = len(rows) if not row_count: if columns is not None: # we can create a zero-record Frame return cls._from_zero_size_shape( columns=columns, columns_constructor=columns_constructor, own_columns=own_columns, name=name, dtypes=dtypes, ) raise ErrorInitFrame('no rows available in records, and no columns defined.') if hasattr(rows, '__getitem__'): rows_to_iter = False row_reference = rows[0] else: # dict view, or other sized iterable that does not support getitem rows_to_iter = True row_reference = next(iter(rows)) if isinstance(row_reference, Series): raise ErrorInitFrame('Frame.from_records() does not support Series records. Use Frame.from_concat() instead.') if isinstance(row_reference, dict): raise ErrorInitFrame('Frame.from_records() does not support dictionary records. Use Frame.from_dict_records() instead.') is_dc_inst = hasattr(row_reference, '__dataclass_fields__') if is_dc_inst: fields_dc = tuple(row_reference.__dataclass_fields__.keys()) column_name_getter = None # NOTE: even if getter is defined, columns list is needed to be available to get_col_dtype after it is populated if columns is None and hasattr(row_reference, '_fields'): # NamedTuple column_name_getter = row_reference._fields.__getitem__ columns = [] elif columns is None and is_dc_inst: column_name_getter = fields_dc.__getitem__ columns = [] get_col_dtype = None if dtypes is None else get_col_dtype_factory(dtypes, columns) # type: ignore # NOTE: row data by definition does not have Index data, so col count is length of row if hasattr(row_reference, '__len__'): col_count = len(row_reference) elif is_dc_inst: col_count = len(fields_dc) # defined in branch above else: raise NotImplementedError(f'cannot get col_count from {row_reference}') if not is_dc_inst: def get_value_iter(col_key: TLabel, col_idx: int) -> tp.Iterator[tp.Any]: rows_iter = rows if not rows_to_iter else iter(rows) return (row[col_key] for row in rows_iter) else: def get_value_iter(col_key: TLabel, col_idx: int) -> tp.Iterator[tp.Any]: rows_iter = rows if not rows_to_iter else iter(rows) return (getattr(row, fields_dc[col_key]) for row in rows_iter) #type: ignore def blocks() -> tp.Iterator[TNDArrayAny]: # iterate over final column order, yielding 1D arrays for col_idx in range(col_count): if column_name_getter: # append as side effect of generator! columns.append(column_name_getter(col_idx)) # type: ignore values = array_from_value_iter( key=col_idx, idx=col_idx, # integer used get_value_iter=get_value_iter, get_col_dtype=get_col_dtype, row_count=row_count ) yield values block_gen: tp.Callable[..., tp.Iterator[TNDArrayAny]] if consolidate_blocks: block_gen = lambda: TypeBlocks.consolidate_blocks(blocks()) else: block_gen = blocks return cls(TypeBlocks.from_blocks(block_gen()), index=index, columns=columns, name=name, own_data=True, index_constructor=index_constructor, columns_constructor=columns_constructor, own_index=own_index, own_columns=own_columns, )
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_dict_records(cls, records: tp.Iterable[tp.Mapping[tp.Any, tp.Any]], *, index: tp.Optional[TIndexInitializer] = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, fill_value: tp.Any = np.nan, consolidate_blocks: bool = False, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, own_index: bool = False, ) -> tp.Self: '''Frame constructor from an iterable of dictionaries, where each dictionary represents a row; column names will be derived from the union of all row dictionary keys. Args: records: Iterable of row values, where row values are dictionaries. index: Optionally provide an iterable of index labels, equal in length to the number of records. If a generator, this value will not be evaluated until after records are loaded. index: {dtypes} {name} {consolidate_blocks} Returns: :obj:`Frame` ''' columns: tp.List[TLabel] = [] get_col_dtype = None if dtypes is None else get_col_dtype_factory(dtypes, columns) get_col_fill_value = (None if not is_fill_value_factory_initializer(fill_value) else get_col_fill_value_factory(fill_value, columns)) rows: tp.Sequence[tp.Mapping[TLabel, tp.Any]] if not hasattr(records, '__len__'): # might be a generator; must convert to sequence rows = list(records) else: # could be a sequence, or something like a dict view rows = records # type: ignore row_count = len(rows) if not row_count: raise ErrorInitFrame('no rows available in records.') if hasattr(rows, '__getitem__'): rows_to_iter = False else: # dict view, or other sized iterable that does not support getitem rows_to_iter = True # derive union columns row_reference: tp.Dict[TLabel, tp.Any] = {} for row in rows: # produce a row that has a value for all observed keys row_reference.update(row) # get value for a column accross all rows def get_value_iter(col_key: TLabel, col_idx: int) -> tp.Iterator[tp.Any]: rows_iter = rows if not rows_to_iter else iter(rows) if get_col_fill_value is not None and get_col_dtype is not None: return (row.get(col_key, get_col_fill_value( col_idx, np.dtype(get_col_dtype(col_idx)))) # might be dtype specifier for row in rows_iter) if get_col_fill_value is not None: return (row.get(col_key, get_col_fill_value(col_idx, None)) for row in rows_iter) return (row.get(col_key, fill_value) for row in rows_iter) def blocks() -> tp.Iterator[TNDArrayAny]: # iterate over final column order, yielding 1D arrays for col_idx, col_key in enumerate(row_reference.keys()): columns.append(col_key) yield array_from_value_iter( key=col_key, idx=col_idx, get_value_iter=get_value_iter, get_col_dtype=get_col_dtype, row_count=row_count ) block_gen: tp.Callable[..., tp.Iterator[TNDArrayAny]] if consolidate_blocks: block_gen = lambda: TypeBlocks.consolidate_blocks(blocks()) else: block_gen = blocks return cls(TypeBlocks.from_blocks(block_gen()), index=index, columns=columns, name=name, own_data=True, index_constructor=index_constructor, columns_constructor=columns_constructor, own_index=own_index, )
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_records_items(cls, items: tp.Iterable[tp.Tuple[TLabel, tp.Iterable[tp.Any]]], *, columns: tp.Optional[TIndexInitializer] = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, own_columns: bool = False, ) -> tp.Self: '''Frame constructor from iterable of pairs of index value, row (where row is an iterable). Args: items: Iterable of pairs of index label, row values, where row values are arrays, tuples, lists, dictionaries, or namedtuples. columns: Optionally provide an iterable of column labels, equal in length to the length of each row. {dtypes} {name} {consolidate_blocks} Returns: :obj:`static_frame.Frame` ''' index = [] def gen() -> tp.Iterator[tp.Iterable[tp.Any]]: for label, values in items: index.append(label) yield values return cls.from_records(gen(), index=index, columns=columns, dtypes=dtypes, name=name, consolidate_blocks=consolidate_blocks, index_constructor=index_constructor, columns_constructor=columns_constructor, own_columns=own_columns, )
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_dict_records_items(cls, items: tp.Iterable[tp.Tuple[TLabel, tp.Mapping[tp.Any, tp.Any]]], *, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False) -> tp.Self: '''Frame constructor from iterable of pairs of index label, row, where row is a dictionary. Column names will be derived from the union of all row dictionary keys. Args: items: Iterable of pairs of index label, row values, where row values are arrays, tuples, lists, dictionaries, or namedtuples. {dtypes} {name} {consolidate_blocks} Returns: :obj:`static_frame.Frame` ''' index = [] def gen() -> tp.Iterator[tp.Mapping[tp.Any, tp.Any]]: for label, values in items: index.append(label) yield values return cls.from_dict_records(gen(), index=index, dtypes=dtypes, name=name, consolidate_blocks=consolidate_blocks )
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_items(cls, pairs: tp.Iterable[tp.Tuple[TLabel, tp.Iterable[tp.Any]]], *, index: tp.Optional[TIndexInitializer] = None, fill_value: tp.Any = np.nan, dtypes: TDtypesSpecifier = None, name: TLabel = None, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, consolidate_blocks: bool = False ) -> tp.Self: '''Frame constructor from an iterator of pairs, where the first value is the column label and the second value is an iterable of column values. :obj:`Series` can be provided as values if an ``index`` argument is supplied. Args: pairs: Iterable of pairs of column name, column values. index: Iterable of values to create an Index. fill_value: If pairs include Series, they will be reindexed with the provided index; reindexing will use this fill value. {dtypes} {name} index_constructor: columns_constructor: {consolidate_blocks} Returns: :obj:`Frame` ''' columns: tp.List[TLabel] = [] # if an index initializer is passed, and we expect to get Series, we need to create the index in advance of iterating blocks # NOTE: could add own_index argument in signature, see implementation in from_fields() own_index = False if _index_initializer_needs_init(index): index = index_from_optional_constructor(index, default_constructor=Index, explicit_constructor=index_constructor ) own_index = True get_col_dtype = None if dtypes is None else get_col_dtype_factory(dtypes, columns) get_col_fill_value = get_col_fill_value_factory(fill_value, columns=columns) def blocks() -> tp.Iterator[TNDArrayAny]: for col_idx, (k, v) in enumerate(pairs): columns.append(k) # side effect of generator! column_type = None if get_col_dtype is None else get_col_dtype(col_idx) #pylint: disable=E1102 if v.__class__ is np.ndarray: # NOTE: we rely on TypeBlocks constructor to check that these are same sized if column_type is not None: yield v.astype(column_type) # type: ignore else: yield v # pyright: ignore elif isinstance(v, Series): if index is None: raise ErrorInitFrame('can only consume Series in Frame.from_items if an Index is provided.') if not v.index.equals(index): # NOTE: we assume we should use column_type if it is specified dtype_for_fv = (np.dtype(column_type) if column_type is not None else v.dtype) v = v.reindex(index, fill_value=get_col_fill_value(col_idx, dtype_for_fv), check_equals=False, ) if column_type is not None: yield v.values.astype(column_type) else: yield v.values elif isinstance(v, Frame): raise ErrorInitFrame('Frames are not supported in from_items constructor.') else: # returned array is immutable values, _ = iterable_to_array_1d(v, column_type) yield values block_gen: tp.Callable[[], tp.Iterator[TNDArrayAny]] if consolidate_blocks: block_gen = lambda: TypeBlocks.consolidate_blocks(blocks()) else: block_gen = blocks return cls(TypeBlocks.from_blocks(block_gen()), index=index, columns=columns, name=name, own_data=True, own_index=own_index, columns_constructor=columns_constructor )
# NOTE: mapping keys must be tp.Any; anything else requires uses TLabel
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_dict(cls, mapping: tp.Mapping[tp.Any, tp.Iterable[tp.Any]], *, index: tp.Optional[TIndexInitializer] = None, fill_value: object = np.nan, dtypes: TDtypesSpecifier = None, name: TLabel = None, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, consolidate_blocks: bool = False ) -> tp.Self: ''' Create a Frame from a dictionary (or any object that has an items() method) where keys are column labels and values are columns values (either sequence types or :obj:`Series`). Args: mapping: a dictionary or similar mapping interface. index: fill_value: {dtypes} {name} index_constructor: columns_constructor: {consolidate_blocks} ''' return cls.from_items(mapping.items(), index=index, fill_value=fill_value, name=name, dtypes=dtypes, index_constructor=index_constructor, columns_constructor=columns_constructor, consolidate_blocks=consolidate_blocks, )
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_fields(cls, fields: tp.Iterable[tp.Iterable[tp.Any]], *, index: tp.Optional[TIndexInitializer] = None, columns: tp.Optional[TIndexInitializer] = None, fill_value: tp.Any = np.nan, dtypes: TDtypesSpecifier = None, name: TLabel = None, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, own_index: bool = False, own_columns: bool = False, consolidate_blocks: bool = False ) -> tp.Self: '''Frame constructor from an iterator of columns, where columns are iterables. :obj:`Series` can be provided as values if an ``index`` argument is supplied. This constructor is similar to ``from_items()``, though here columns are provided through an independent ``columns`` argument. Args: fields: Iterable of column values. index: Iterable of values to create an Index. fill_value: If pairs include Series, they will be reindexed with the provided index; reindexing will use this fill value. {dtypes} {name} {consolidate_blocks} Returns: :obj:`static_frame.Frame` ''' # if an index initializer is passed, and we expect to get Series, we need to create the index in advance of iterating blocks if not own_index and _index_initializer_needs_init(index): index = index_from_optional_constructor(index, default_constructor=Index, explicit_constructor=index_constructor ) own_index = True get_col_dtype = None if dtypes is None else get_col_dtype_factory(dtypes, columns) #type: ignore get_col_fill_value = get_col_fill_value_factory(fill_value, columns=columns) # type: ignore def blocks() -> tp.Iterator[TNDArrayAny]: for col_idx, v in enumerate(fields): column_type = None if get_col_dtype is None else get_col_dtype(col_idx) #pylint: disable=E1102 if v.__class__ is np.ndarray: if column_type is not None: yield v.astype(column_type) # type: ignore else: yield v # pyright: ignore elif isinstance(v, Series): if index is None: raise ErrorInitFrame('can only consume Series in Frame.from_fields if an Index is provided.') if not v.index.equals(index): dtype_for_fv = (np.dtype(column_type) if column_type is not None else v.dtype) v = v.reindex(index, fill_value=get_col_fill_value(col_idx, dtype_for_fv), check_equals=False, ) if column_type is not None: yield v.values.astype(column_type) else: yield v.values elif isinstance(v, Frame): raise ErrorInitFrame('Frames are not supported in from_fields constructor.') else: # returned array is immutable values, _ = iterable_to_array_1d(v, column_type) yield values block_gen: tp.Callable[..., tp.Iterator[TNDArrayAny]] if consolidate_blocks: block_gen = lambda: TypeBlocks.consolidate_blocks(blocks()) else: block_gen = blocks return cls(TypeBlocks.from_blocks(block_gen()), index=index, columns=columns, name=name, own_data=True, own_index=own_index, own_columns=own_columns, columns_constructor=columns_constructor, index_constructor=None if own_index else index_constructor, )
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_dict_fields(cls, fields: tp.Iterable[tp.Mapping[tp.Any, tp.Any]], *, columns: tp.Optional[TIndexInitializer] = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, fill_value: tp.Any = np.nan, consolidate_blocks: bool = False, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, own_index: bool = False, ) -> tp.Self: '''Frame constructor from an iterable of dictionaries, where each dictionary represents a column; index labels will be derived from the union of all column dictionary keys. Args: fields: Iterable of column values, where column values are dictionaries. index: Optionally provide an iterable of index labels, equal in length to the number of fields. If a generator, this value will not be evaluated until after fields are loaded. columns: {dtypes} {name} {consolidate_blocks} Returns: :obj:`Frame` ''' get_col_dtype = None if dtypes is None else get_col_dtype_factory(dtypes, columns) # type: ignore get_col_fill_value = (None if not is_fill_value_factory_initializer(fill_value) else get_col_fill_value_factory(fill_value, columns)) # type: ignore cols: tp.Sequence[tp.Mapping[tp.Any, tp.Any]] if not hasattr(fields, '__len__'): # might be a generator; must convert to sequence cols = list(fields) else: # could be a sequence, or something like a dict view cols = fields # type: ignore cols_count = len(cols) if not cols_count: raise ErrorInitFrame('No columns available in `fields`.') # derive union index col_reference: tp.Dict[TLabel, tp.Any] = {} for col in cols: # produce a column that has a value for all observed keys col_reference.update(col) def blocks() -> tp.Iterator[TNDArrayAny]: cols_iter = cols if hasattr(cols, '__getitem__') else iter(cols) for col_idx, col_dict in enumerate(cols_iter): dtype = None if get_col_fill_value is not None and get_col_dtype is not None: dts = get_col_dtype(col_idx) dtype = None if dts is None else np.dtype(dts) fv = get_col_fill_value(col_idx, dtype) # might be dtype specifier if get_col_fill_value is not None: fv = get_col_fill_value(col_idx, None) else: fv = fill_value values = [] for key in col_reference: values.append(col_dict.get(key, fv)) if dtype is None: array, _ = iterable_to_array_1d(values, count=len(values)) else: array = np.array(values, dtype=dtype) array.flags.writeable = False yield array block_gen: tp.Callable[..., tp.Iterator[TNDArrayAny]] if consolidate_blocks: block_gen = lambda: TypeBlocks.consolidate_blocks(blocks()) else: block_gen = blocks return cls(TypeBlocks.from_blocks(block_gen()), index=col_reference.keys(), columns=columns, name=name, own_data=True, index_constructor=index_constructor, columns_constructor=columns_constructor, own_index=own_index, )
@staticmethod def _structured_array_to_d_ia_cl( array: TNDArrayAny, *, index_depth: int = 0, index_column_first: tp.Optional[TIndexSpecifier] = None, dtypes: TDtypesSpecifier = None, consolidate_blocks: bool = False, store_filter: tp.Optional[StoreFilter] = STORE_FILTER_DEFAULT, ) -> tp.Tuple[TypeBlocks, tp.Sequence[TNDArrayAny], tp.Sequence[TLabel]]: ''' Expanded function name: _structure_array_to_data_index_arrays_columns_labels Utility function for creating TypeBlocks from structure array (or a 2D array that np.genfromtxt might have returned) while extracting index and columns labels. Does not form Index objects for columns or index, allowing down-stream processes to do so. Args: index_column_first: optionally name the column that will start the block of index columns. ''' names = array.dtype.names # using names instead of fields, as this is NP convention is_structured_array = True if names is None: is_structured_array = False # raise ErrorInitFrame('array is not a structured array') # could use np.rec.fromarrays, but that makes a copy; better to use the passed in array # must be a 2D array names = tuple(range(array.shape[1])) index_start_pos: int | np.integer[tp.Any] = -1 # will be ignored index_end_pos = -1 if index_column_first is not None: if index_depth <= 0: raise ErrorInitFrame('index_column_first specified but index_depth is 0') elif isinstance(index_column_first, INT_TYPES): index_start_pos = index_column_first else: index_start_pos = names.index(index_column_first) # linear performance index_end_pos = index_start_pos + index_depth - 1 else: # no index_column_first specified, if index depth > 0, set start to 0 if index_depth > 0: index_start_pos = 0 # Subtract one for inclusive boun index_end_pos = index_start_pos + index_depth - 1 # assign in generator index_arrays = [] # collect whatever labels are found on structured arrays; these may not be the same as the passed in columns, if columns are provided columns_labels = [] columns_by_col_idx: tp.List[TLabel] = [] get_col_dtype = None if dtypes is None else get_col_dtype_factory( dtypes, columns_by_col_idx) def blocks() -> tp.Iterator[TNDArrayAny]: # iterate over column names and yield one at a time for block construction; collect index arrays and column labels as we go for col_idx, name in enumerate(names): # append here as we iterate for usage in get_col_dtype columns_by_col_idx.append(name) if is_structured_array: # expect a 1D array with selection, not a copy array_final = array[name] if array_final.ndim == 0: # NOTE: observed with some version of NumPy some structured arrays give 0 ndim arrays when selected by name, but cannot reproduce with newer NumPy array_final = np.reshape(array_final, (1,)) #pragma: no cover else: # alyways a 2D array, name is integer for column, slice a 1D array array_final = array[NULL_SLICE, name] # do StoreFilter conversions before dtype if store_filter is not None: array_final = store_filter.to_type_filter_array(array_final) if get_col_dtype: # dtypes are applied to all columns and can refer to columns that will become part of the Index by name or iloc position: we need to be able to type these before creating Index obejcts dtype = get_col_dtype(col_idx) #pylint: disable=E1102 if dtype is not None: array_final = array_final.astype(dtype) array_final.flags.writeable = False if col_idx >= index_start_pos and col_idx <= index_end_pos: index_arrays.append(array_final) continue columns_labels.append(name) yield array_final if consolidate_blocks: data = TypeBlocks.from_blocks(TypeBlocks.consolidate_blocks(blocks())) else: data = TypeBlocks.from_blocks(blocks()) return data, index_arrays, columns_labels @classmethod def _from_data_index_arrays_column_labels(cls, data: TypeBlocks, index_depth: int, index_arrays: tp.Sequence[TNDArrayAny], index_constructors: TIndexCtorSpecifiers, columns_depth: int, columns_labels: tp.Sequence[TLabel], columns_constructors: TIndexCtorSpecifiers, name: TLabel, ) -> tp.Self: ''' Private constructor used for specialized construction from NP Structured array, as well as StoreHDF5. ''' columns_default_constructor: TIndexCtorSpecifier if columns_depth <= 1: columns_default_constructor = cls._COLUMNS_CONSTRUCTOR else: columns_default_constructor = partial( cls._COLUMNS_HIERARCHY_CONSTRUCTOR.from_labels_delimited, delimiter=' ') columns, own_columns = index_from_optional_constructors( columns_labels, depth=columns_depth, default_constructor=columns_default_constructor, explicit_constructors=columns_constructors, # cannot supply name ) index_values: tp.Iterable[tp.Any] if index_depth == 1: index_values = index_arrays[0] index_default_constructor = Index else: # > 1 # might use _from_type_blocks, but would not be able to use continuation token index_values = zip(*index_arrays) index_default_constructor = IndexHierarchy.from_labels # type: ignore index, own_index = index_from_optional_constructors( index_values, depth=index_depth, default_constructor=index_default_constructor, explicit_constructors=index_constructors, # cannot supply name ) return cls(data=data, own_data=True, columns=columns, own_columns=own_columns, index=index, own_index=own_index, name=name, )
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_structured_array(cls, array: TNDArrayAny, *, index_depth: int = 0, index_column_first: tp.Optional[TIndexSpecifier] = None, index_constructors: TIndexCtorSpecifiers = None, columns_depth: int = 1, columns_constructors: TIndexCtorSpecifiers = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, store_filter: tp.Optional[StoreFilter] = STORE_FILTER_DEFAULT ) -> tp.Self: ''' Convert a NumPy structed array into a Frame. Args: array: Structured NumPy array. index_depth: Depth if index levels, where (for example) 0 is no index, 1 is a single column index, and 2 is a two-columns IndexHierarchy. index_column_first: Optionally provide the name or position offset of the column to use as the index. {dtypes} {name} {consolidate_blocks} Returns: :obj:`static_frame.Frame` ''' # from a structured array, we assume we want to get the columns labels data, index_arrays, columns_labels = cls._structured_array_to_d_ia_cl( array=array, index_depth=index_depth, index_column_first=index_column_first, dtypes=dtypes, consolidate_blocks=consolidate_blocks, store_filter=store_filter, ) return cls._from_data_index_arrays_column_labels( data=data, index_depth=index_depth, index_arrays=index_arrays, index_constructors=index_constructors, columns_depth=columns_depth, columns_labels=columns_labels, columns_constructors=columns_constructors, name=name )
#---------------------------------------------------------------------------
[docs] @classmethod def from_element_items(cls, items: tp.Iterable[tp.Tuple[ tp.Tuple[TLabel, TLabel], tp.Any]], *, index: TIndexInitializer, columns: TIndexInitializer, dtype: TDtypesSpecifier = None, axis: tp.Optional[int] = None, name: TName = None, fill_value: tp.Any = FILL_VALUE_DEFAULT, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, own_index: bool = False, own_columns: bool = False, ) -> tp.Self: ''' Create a :obj:`Frame` from an iterable of key, value, where key is a pair of row, column labels. This function is partialed (setting the index and columns) and used by ``IterNodeDelegate`` as the apply constructor for doing application on element iteration. Args: items: an iterable of pairs of 2-tuples of row, column loc labels and values. axis: when None, items can be in an order; when 0, items must be well-formed and ordered row major; when 1, items must be well-formed and ordered columns major. Returns: :obj:`static_frame.Frame` ''' if not own_index: index = index_from_optional_constructor(index, default_constructor=Index, explicit_constructor=index_constructor ) own_index = True if not own_columns: columns = index_from_optional_constructor(columns, default_constructor=cls._COLUMNS_CONSTRUCTOR, explicit_constructor=columns_constructor ) own_columns = True if axis is None: if not is_dtype_specifier(dtype): raise ErrorInitFrame('cannot provide multiple dtypes when creating a Frame from element items and axis is None') if is_fill_value_factory_initializer(fill_value): raise InvalidFillValue(fill_value, 'axis==None') items_iloc: tp.Iterator[tp.Tuple[tp.Tuple[int, int], tp.Any]] = ( ((index._loc_to_iloc(k[0]), columns._loc_to_iloc(k[1])), v) # type: ignore for k, v in items) dt: TDtypeSpecifier = dtype if dtype is not None else DTYPE_OBJECT # type: ignore tb = TypeBlocks.from_element_items( items_iloc, shape=(len(index), len(columns)), #type: ignore dtype=dt, fill_value=fill_value) return cls(tb, index=index, columns=columns, name=name, own_data=True, own_index=own_index, # always true as either provided or created new own_columns=own_columns, ) elif axis == 0: # row wise, use from-records def records() -> tp.Iterator[tp.List[tp.Any]]: # do not need to convert loc to iloc items_iter = iter(items) first = next(items_iter) (r_last, _), value = first values = [value] for (r, c), v in items_iter: if r != r_last: yield values r_last = r values = [] values.append(v) yield values return cls.from_records(records(), index=index, columns=columns, name=name, own_index=own_index, own_columns=own_columns, dtypes=dtype, ) elif axis == 1: # column wise, use from_fields def fields() -> tp.Iterator[tp.List[tp.Any]]: items_iter = iter(items) first = next(items_iter) (_, c_last), value = first values = [value] for (r, c), v in items_iter: if c != c_last: yield values c_last = c values = [] values.append(v) yield values return cls.from_fields(fields(), index=index, columns=columns, name=name, own_index=own_index, own_columns=own_columns, dtypes=dtype, ) raise AxisInvalid(f'no support for axis: {axis}')
#--------------------------------------------------------------------------- # file, data format loaders
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_sql(cls, query: str, *, connection: sqlite3.Connection, index_depth: int = 0, index_constructors: TIndexCtorSpecifiers = None, columns_depth: int = 1, columns_select: tp.Iterable[str | tp.Tuple[str, ...]] | None = None, columns_constructors: TIndexCtorSpecifiers = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, parameters: tp.Any = (), ) -> tp.Self: ''' Frame constructor from an SQL query and a database connection object. Args: query: A query string. connection: A DBAPI2 (PEP 249) Connection object, such as those returned from SQLite (via the sqlite3 module) or PyODBC. {dtypes} index_depth: index_constructors: columns_depth: columns_select: An optional iterable of field names to extract from the results of the query. columns_constructors: {name} {consolidate_blocks} parameters: Provide a list of values for an SQL query expecting parameter substitution. ''' columns: tp.Optional[IndexBase] = None own_columns = False # We cannot assume the cursor object returned by DBAPI Connection to have a context manager, thus all cursor usage needs to be wrapped in a try/finally to insure that the cursor is closed. cursor: sqlite3.Cursor | None = None try: cursor = connection.cursor() cursor.execute(query, parameters) if columns_select: columns_select = set(columns_select) # selector function defined below def filter_row(row: tp.Sequence[tp.Any]) -> tp.Sequence[tp.Any]: post = selector(row) return post if not selector_reduces else (post,) # type: ignore if columns_depth > 0 or columns_select: # always need to derive labels if using columns_select labels = (col for (col, *_) in cursor.description[index_depth:]) if columns_depth <= 1 and columns_select: iloc_sel, labels = zip(*( pair for pair in enumerate(labels) if pair[1] in columns_select )) selector = itemgetter(*iloc_sel) selector_reduces = len(iloc_sel) == 1 if columns_depth == 1: columns, own_columns = index_from_optional_constructors( labels, depth=columns_depth, default_constructor=cls._COLUMNS_CONSTRUCTOR, explicit_constructors=columns_constructors, # cannot supply name ) elif columns_depth > 1: # NOTE: we only support loading in IH if encoded in each header with a space delimiter columns_constructor: TIndexHierarchyCtor = partial( cls._COLUMNS_HIERARCHY_CONSTRUCTOR.from_labels_delimited, delimiter=' ', ) columns, own_columns = index_from_optional_constructors( labels, depth=columns_depth, default_constructor=columns_constructor, explicit_constructors=columns_constructors, ) if columns_select: iloc_sel = columns._loc_to_iloc(columns.isin(columns_select)) # type: ignore selector = itemgetter(*iloc_sel) selector_reduces = len(iloc_sel) == 1 # pyright: ignore columns = columns.iloc[iloc_sel] # type: ignore # NOTE: cannot own_index as we defer calling the constructor until after call Frame # map dtypes in context of pre-index extraction if index_depth > 0: get_col_dtype = None if dtypes is None else get_col_dtype_factory( dtypes, [col for (col, *_) in cursor.description], ) index_constructor: TIndexCtorSpecifier row_gen: tp.Callable[..., tp.Iterator[tp.Sequence[tp.Any]]] # pyright: ignore if index_depth == 0: index = None row_gen = lambda: cursor index_constructor = None elif index_depth == 1: index = [] # lazily populate default_constructor: tp.Type[Index] = partial(Index, dtype=get_col_dtype(0)) if get_col_dtype else Index # type: ignore # parital to include everything but values index_constructor = constructor_from_optional_constructors( depth=index_depth, default_constructor=default_constructor, explicit_constructors=index_constructors, ) def row_gen() -> tp.Iterator[tp.Sequence[tp.Any]]: for row in cursor: index.append(row[0]) yield row[1:] else: # > 1 index = [list() for _ in range(index_depth)] def default_constructor( iterables: tp.Iterable[tp.Iterable[TLabel]], index_constructors: TIndexCtorSpecifiers, ) -> IndexHierarchy: #pylint: disable=function-redefined if get_col_dtype: blocks = [iterable_to_array_1d(it, get_col_dtype(i))[0] for i, it in enumerate(iterables)] else: blocks = [iterable_to_array_1d(it)[0] for it in iterables] return IndexHierarchy._from_type_blocks( TypeBlocks.from_blocks(blocks), index_constructors=index_constructors, own_blocks=True, ) # parital to include everything but values index_constructor = constructor_from_optional_constructors( depth=index_depth, default_constructor=default_constructor, explicit_constructors=index_constructors, ) def row_gen() -> tp.Iterator[tp.Sequence[tp.Any]]: for row in cursor: for i, label in enumerate(row[:index_depth]): index[i].append(label) yield row[index_depth:] if columns_select: row_gen_final = (filter_row(row) for row in row_gen()) else: row_gen_final = row_gen() # type: ignore return cls.from_records( row_gen_final, columns=columns, index=index, dtypes=dtypes, name=name, own_columns=own_columns, index_constructor=index_constructor, consolidate_blocks=consolidate_blocks, ) finally: if cursor: cursor.close()
#---------------------------------------------------------------------------
[docs] @classmethod @doc_inject(selector='json') def from_json_index(cls, json_data: tp.Union[str, StringIO], *, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, ) -> tp.Self: '''Frame constructor from an in-memory JSON document in the following format: {json_index} Args: json_data: a string or StringIO of JSON data {dtypes} {name} {consolidate_blocks} Returns: :obj:`Frame` ''' if isinstance(json_data, STRING_TYPES): data = json.loads(json_data) else: # StringIO or open file data = json.load(json_data) index = [] def gen() -> tp.Iterator[tp.Iterable[tp.Any]]: for k, v in data.items(): index.append(k) yield v return cls.from_dict_records(gen(), # type: ignore index=index, dtypes=dtypes, name=name, consolidate_blocks=consolidate_blocks, index_constructor=index_constructor, columns_constructor=columns_constructor, )
[docs] @classmethod @doc_inject(selector='json') def from_json_columns(cls, json_data: tp.Union[str, StringIO], *, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, ) -> tp.Self: '''Frame constructor from an in-memory JSON document in the following format: {json_columns} Args: json_data: a string or StringIO of JSON data {dtypes} {name} {consolidate_blocks} Returns: :obj:`Frame` ''' if isinstance(json_data, STRING_TYPES): data = json.loads(json_data) else: # StringIO or open file data = json.load(json_data) columns = [] def gen() -> tp.Iterator[tp.Iterable[tp.Any]]: for k, v in data.items(): columns.append(k) yield v return cls.from_dict_fields(gen(), # type: ignore columns=columns, dtypes=dtypes, name=name, consolidate_blocks=consolidate_blocks, index_constructor=index_constructor, columns_constructor=columns_constructor, )
[docs] @classmethod @doc_inject(selector='json') def from_json_split(cls, json_data: tp.Union[str, StringIO], *, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, ) -> tp.Self: '''Frame constructor from an in-memory JSON document in the following format: {json_split} Args: json_data: a string or StringIO of JSON data {dtypes} {name} {consolidate_blocks} Returns: :obj:`Frame` ''' if isinstance(json_data, STRING_TYPES): data = json.loads(json_data) else: # StringIO or open file data = json.load(json_data) return cls.from_records(data['data'], index=data['index'], columns=data['columns'], dtypes=dtypes, name=name, consolidate_blocks=consolidate_blocks, index_constructor=index_constructor, columns_constructor=columns_constructor, )
[docs] @classmethod @doc_inject(selector='json') def from_json_records(cls, json_data: tp.Union[str, StringIO], *, index: tp.Optional[TIndexInitializer] = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, ) -> tp.Self: '''Frame constructor from an in-memory JSON document in the following format: {json_records} Args: json_data: a string or StringIO of JSON data {dtypes} {name} {consolidate_blocks} Returns: :obj:`Frame` ''' if isinstance(json_data, STRING_TYPES): data = json.loads(json_data) else: # StringIO or open file data = json.load(json_data) return cls.from_dict_records(data, index=index, dtypes=dtypes, name=name, consolidate_blocks=consolidate_blocks, index_constructor=index_constructor, columns_constructor=columns_constructor, )
[docs] @classmethod @doc_inject(selector='json') def from_json_values(cls, json_data: tp.Union[str, StringIO], *, index: tp.Optional[TIndexInitializer] = None, columns: tp.Optional[TIndexInitializer] = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, ) -> tp.Self: '''Frame constructor from an in-memory JSON document in the following format: {json_values} Args: json_data: a string or StringIO of JSON data {dtypes} {name} {consolidate_blocks} Returns: :obj:`Frame` ''' if isinstance(json_data, STRING_TYPES): data = json.loads(json_data) else: # StringIO or open file data = json.load(json_data) return cls.from_records(data, index=index, columns=columns, dtypes=dtypes, name=name, consolidate_blocks=consolidate_blocks, index_constructor=index_constructor, columns_constructor=columns_constructor, )
[docs] @classmethod @doc_inject(selector='json') def from_json_typed(cls, json_data: tp.Union[str, StringIO], *, consolidate_blocks: bool = False, ) -> tp.Self: '''Frame constructor from an in-memory JSON document in the following format: {json_typed} Args: json_data: a string or StringIO of JSON data Returns: :obj:`Frame` ''' if isinstance(json_data, STRING_TYPES): data = json.loads(json_data) else: # StringIO or open file data = json.load(json_data) md = data['__meta__'] name = md[JSONMeta.KEY_NAMES][0] # first is for Frame dtypes = md[JSONMeta.KEY_DTYPES] index_constructor, columns_constructor = JSONMeta.from_dict_to_ctors( md, cls.STATIC, ) return cls.from_fields(data['data'], index=data['index'], columns=data['columns'], dtypes=dtypes, name=name, consolidate_blocks=consolidate_blocks, index_constructor=index_constructor, columns_constructor=columns_constructor, )
#---------------------------------------------------------------------------
[docs] @classmethod @doc_inject(selector='constructor_frame') def from_delimited(cls, fp: TPathSpecifierOrTextIOOrIterator, *, delimiter: str, index_depth: int = 0, index_column_first: int = 0, index_name_depth_level: tp.Optional[TDepthLevel] = None, index_constructors: TIndexCtorSpecifiers = None, index_continuation_token: tp.Optional[TLabel] = CONTINUATION_TOKEN_INACTIVE, columns_depth: int = 1, columns_name_depth_level: tp.Optional[TDepthLevel] = None, columns_constructors: TIndexCtorSpecifiers = None, columns_continuation_token: tp.Optional[TLabel] = CONTINUATION_TOKEN_INACTIVE, columns_select: tp.Optional[tp.Iterable[TLabel]] = None, skip_header: int = 0, skip_footer: int = 0, skip_initial_space: bool = False, quoting: int = csv.QUOTE_MINIMAL, quote_char: str = '"', quote_double: bool = True, escape_char: tp.Optional[str] = None, thousands_char: str = '', decimal_char: str = '.', encoding: tp.Optional[str] = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, store_filter: tp.Optional[StoreFilter] = None, ) -> tp.Self: ''' Create a :obj:`Frame` from a file path or a file-like object defining a delimited (CSV, TSV) data file. Args: fp: A file path or a file-like object. delimiter: The character used to seperate row elements. index_depth: Specify the number of columns used to create the index labels; a value greater than 1 will attempt to create a hierarchical index. index_column_first: Optionally specify a column, by position in the realized columns, to become the start of the index if index_depth is greater than 0 and columns_depth is 0. index_name_depth_level: If columns_depth is greater than 0, interpret values over index as the index name. index_constructors: index_continuation_token: columns_depth: Specify the number of rows after the skip_header used to create the column labels. A value of 0 will be no header; a value greater than 1 will attempt to create a hierarchical index. columns_name_depth_level: If index_depth is greater than 0, interpret values over index as the columns name. columns_constructors: columns_continuation_token: columns_select: an iterable of columns to select by label or position; can only be used if index_depth is 0. skip_header: Number of leading lines to skip. skip_footer: Number of trailing lines to skip. store_filter: A StoreFilter instance, defining translation between unrepresentable strings and types. By default it is disabled, and only empty fields or "NAN" are intepreted as NaN. To force usage, set the type of the column to string. {dtypes} {name} {consolidate_blocks} Returns: :obj:`static_frame.Frame` ''' if skip_header < 0: raise ErrorInitFrame('skip_header must be greater than or equal to 0') fpf = path_filter(fp) # normalize Path to strings if not skip_footer: def file_like() -> tp.Iterator[str]: if isinstance(fpf, str): with open(fpf, 'r', encoding=encoding) as f: yield from f else: # iterable of string lines, StringIO yield from fpf else: def file_like() -> tp.Iterator[str]: row_buffer: tp.Deque[str] = deque(maxlen=skip_footer) if isinstance(fpf, str): with open(fpf, 'r', encoding=encoding) as f: for i, row in enumerate(f): if i >= skip_footer: yield row_buffer.popleft() row_buffer.append(row) else: for i, row in enumerate(fpf): if i >= skip_footer: yield row_buffer.popleft() row_buffer.append(row) row_iter = file_like() if skip_header: for _ in range(skip_header): next(row_iter) apex_rows = [] if columns_depth: columns_arrays = [] for _ in range(columns_depth): row = next(row_iter) if index_depth == 0: row_left = '' row_right = row else: row_left, row_right = split_after_count( row, delimiter=delimiter, count=index_depth, quoting=quoting, quotechar=quote_char, doublequote=quote_double, escapechar=escape_char, ) [array_right] = delimited_to_arrays( (row_right,), axis=0, # process type per row delimiter=delimiter, quoting=quoting, quotechar=quote_char, doublequote=quote_double, escapechar=escape_char, thousandschar=thousands_char, decimalchar=decimal_char, skipinitialspace=skip_initial_space, ) columns_arrays.append(array_right) if row_left: [array_left] = delimited_to_arrays( (row_left,), axis=0, # process type per row delimiter=delimiter, quoting=quoting, quotechar=quote_char, doublequote=quote_double, escapechar=escape_char, thousandschar=thousands_char, decimalchar=decimal_char, skipinitialspace=skip_initial_space, ) apex_rows.append(array_left) if columns_depth == 0: columns = None own_columns = False else: columns_name = None if index_depth == 0 else apex_to_name( rows=apex_rows, depth_level=columns_name_depth_level, axis=1, axis_depth=columns_depth) columns_constructor: TIndexHierarchyCtor if columns_depth == 1: columns, own_columns = index_from_optional_constructors( columns_arrays[0], depth=columns_depth, default_constructor=partial(cls._COLUMNS_CONSTRUCTOR, name=columns_name), explicit_constructors=columns_constructors, # cannot supply name ) elif columns_continuation_token is not CONTINUATION_TOKEN_INACTIVE: if store_filter is not None: labels = zip_longest( *(store_filter.to_type_filter_array(x) for x in columns_arrays), # pyright: ignore fillvalue=columns_continuation_token, ) else: labels = zip_longest( *columns_arrays, fillvalue=columns_continuation_token, ) columns_constructor = partial( cls._COLUMNS_HIERARCHY_CONSTRUCTOR.from_labels, name=columns_name, continuation_token=columns_continuation_token, ) columns, own_columns = index_from_optional_constructors( labels, depth=columns_depth, default_constructor=columns_constructor, explicit_constructors=columns_constructors, ) else: if store_filter is not None: columns_arrays = [store_filter.to_type_filter_array(x) for x in columns_arrays] # pyright: ignore columns_constructor = partial( cls._COLUMNS_HIERARCHY_CONSTRUCTOR.from_values_per_depth, name=columns_name, ) columns, own_columns = index_from_optional_constructors( columns_arrays, # pyright: ignore depth=columns_depth, default_constructor=columns_constructor, explicit_constructors=columns_constructors, ) line_select: tp.Optional[tp.Callable[[int], bool]] if columns_select: if index_depth: raise ErrorInitFrame('Cannot use columns_select if index_depth is greater than zero.') # NOTE: this is because the final columns labels might be different than those provided via input due to line_select and index_depth if columns is not None: columns_included = list(columns.loc_to_iloc(l) for l in columns_select) columns = columns.iloc[columns_included] else: # assume columns_select are integers columns_included = list(columns_select) # type: ignore # order of columns_included maters line_select = set(columns_included).__contains__ else: line_select = None get_col_dtype = (None if dtypes is None else get_col_dtype_factory(dtypes, columns, index_depth)) values_arrays: tp.Sequence[TNDArrayAny] = delimited_to_arrays( row_iter, axis=1, # process type per column line_select=line_select, delimiter=delimiter, quoting=quoting, quotechar=quote_char, doublequote=quote_double, escapechar=escape_char, thousandschar=thousands_char, decimalchar=decimal_char, skipinitialspace=skip_initial_space, dtypes=get_col_dtype, ) if store_filter is not None: values_arrays = [store_filter.to_type_filter_array(a) for a in values_arrays] if index_depth: if index_column_first: # NOTE: we cannot use index_columns_first with labels in columns, as columns has to be truncated for index_depth before the index can be created if columns is not None: raise ErrorInitFrame('Cannot use index_column_first if columns_depth is greater than 0.') elif isinstance(index_column_first, INT_TYPES): index_start = index_column_first else: raise ErrorInitFrame('index_column_first must be an integer.') index_end = index_start + index_depth index_arrays = values_arrays[index_start: index_end] values_arrays = chain( #type: ignore values_arrays[:index_start], values_arrays[index_end:], ) else: index_arrays = values_arrays[:index_depth] values_arrays = values_arrays[index_depth:] else: if index_column_first: raise ErrorInitFrame('Cannot set index_column_first without setting nonzero index_depth.') if values_arrays: if consolidate_blocks: blocks = TypeBlocks.from_blocks( TypeBlocks.consolidate_blocks(values_arrays)) else: blocks = TypeBlocks.from_blocks(values_arrays) else: blocks = FRAME_INITIALIZER_DEFAULT # type: ignore kwargs = dict( data=blocks, own_data=True, columns=columns, own_columns=own_columns, name=name ) if index_depth == 0: return cls(index=None, **kwargs) # type: ignore index_name = None if columns_depth == 0 else apex_to_name( rows=apex_rows, depth_level=index_name_depth_level, axis=0, axis_depth=index_depth) index_values: tp.Iterable[tp.Any] index_constructor: TIndexCtor if index_depth == 1: if not index_arrays: index_values = () # assume an empty Frame assert blocks is FRAME_INITIALIZER_DEFAULT else: index_values = index_arrays[0] index_constructor = partial(Index, name=index_name) index, own_index = index_from_optional_constructors( index_values, depth=index_depth, default_constructor=index_constructor, explicit_constructors=index_constructors, # cannot supply name ) elif index_continuation_token is not CONTINUATION_TOKEN_INACTIVE: # expect all index_arrays to have the same length index_values = zip(*index_arrays) index_constructor = partial(IndexHierarchy.from_labels, name=index_name, continuation_token=index_continuation_token, ) index, own_index = index_from_optional_constructors( index_values, depth=index_depth, default_constructor=index_constructor, explicit_constructors=index_constructors, # cannot supply name ) else: # index_depth > 1, no continuation toke`n index_constructor = partial( IndexHierarchy.from_values_per_depth, name=index_name, ) index, own_index = index_from_optional_constructors( index_arrays, # type: ignore depth=index_depth, default_constructor=index_constructor, explicit_constructors=index_constructors, # cannot supply name ) return cls( index=index, own_index=own_index, **kwargs # type: ignore )
[docs] @classmethod def from_csv(cls, fp: TPathSpecifierOrTextIOOrIterator, *, index_depth: int = 0, index_column_first: int = 0, index_name_depth_level: tp.Optional[TDepthLevel] = None, index_constructors: TIndexCtorSpecifiers = None, index_continuation_token: tp.Union[TLabel, None] = CONTINUATION_TOKEN_INACTIVE, columns_depth: int = 1, columns_name_depth_level: tp.Optional[TDepthLevel] = None, columns_constructors: TIndexCtorSpecifiers = None, columns_continuation_token: tp.Union[TLabel, None] = CONTINUATION_TOKEN_INACTIVE, columns_select: tp.Optional[tp.Iterable[TLabel]] = None, skip_header: int = 0, skip_footer: int = 0, skip_initial_space: bool = False, quoting: int = csv.QUOTE_MINIMAL, quote_char: str = '"', quote_double: bool = True, escape_char: tp.Optional[str] = None, thousands_char: str = '', decimal_char: str = '.', encoding: tp.Optional[str] = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, store_filter: tp.Optional[StoreFilter] = None, ) -> tp.Self: ''' Specialized version of :obj:`Frame.from_delimited` for CSV files. Returns: :obj:`Frame` ''' return cls.from_delimited(fp, delimiter=',', index_depth=index_depth, index_column_first=index_column_first, index_name_depth_level=index_name_depth_level, index_constructors=index_constructors, index_continuation_token=index_continuation_token, columns_depth=columns_depth, columns_name_depth_level=columns_name_depth_level, columns_constructors=columns_constructors, columns_continuation_token=columns_continuation_token,columns_select=columns_select, skip_header=skip_header, skip_footer=skip_footer, skip_initial_space=skip_initial_space, quoting=quoting, quote_char=quote_char, quote_double=quote_double, escape_char=escape_char, thousands_char=thousands_char, decimal_char=decimal_char, encoding=encoding, dtypes=dtypes, name=name, consolidate_blocks=consolidate_blocks, store_filter=store_filter, )
[docs] @classmethod def from_tsv(cls, fp: TPathSpecifierOrTextIOOrIterator, *, index_depth: int = 0, index_column_first: int = 0, index_name_depth_level: tp.Optional[TDepthLevel] = None, index_constructors: TIndexCtorSpecifiers = None, index_continuation_token: tp.Union[TLabel, None] = CONTINUATION_TOKEN_INACTIVE, columns_depth: int = 1, columns_name_depth_level: tp.Optional[TDepthLevel] = None, columns_constructors: TIndexCtorSpecifiers = None, columns_continuation_token: tp.Union[TLabel, None] = CONTINUATION_TOKEN_INACTIVE, columns_select: tp.Optional[tp.Iterable[TLabel]] = None, skip_header: int = 0, skip_footer: int = 0, skip_initial_space: bool = False, quoting: int = csv.QUOTE_MINIMAL, quote_char: str = '"', quote_double: bool = True, escape_char: tp.Optional[str] = None, thousands_char: str = '', decimal_char: str = '.', encoding: tp.Optional[str] = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, store_filter: tp.Optional[StoreFilter] = None, ) -> tp.Self: ''' Specialized version of :obj:`Frame.from_delimited` for TSV files. Returns: :obj:`static_frame.Frame` ''' return cls.from_delimited(fp, delimiter='\t', index_depth=index_depth, index_column_first=index_column_first, index_name_depth_level=index_name_depth_level, index_constructors=index_constructors, index_continuation_token=index_continuation_token, columns_depth=columns_depth, columns_name_depth_level=columns_name_depth_level, columns_constructors=columns_constructors, columns_continuation_token=columns_continuation_token, columns_select=columns_select, skip_header=skip_header, skip_footer=skip_footer, skip_initial_space=skip_initial_space, quoting=quoting, quote_char=quote_char, quote_double=quote_double, escape_char=escape_char, thousands_char=thousands_char, decimal_char=decimal_char, encoding=encoding, dtypes=dtypes, name=name, consolidate_blocks=consolidate_blocks, store_filter=store_filter, )
[docs] @classmethod def from_clipboard(cls, *, delimiter: str = '\t', index_depth: int = 0, index_column_first: int = 0, index_name_depth_level: tp.Optional[TDepthLevel] = None, index_constructors: TIndexCtorSpecifiers = None, index_continuation_token: tp.Union[TLabel, None] = CONTINUATION_TOKEN_INACTIVE, columns_depth: int = 1, columns_name_depth_level: tp.Optional[TDepthLevel] = None, columns_constructors: TIndexCtorSpecifiers = None, columns_continuation_token: tp.Union[TLabel, None] = CONTINUATION_TOKEN_INACTIVE, columns_select: tp.Optional[tp.Iterable[TLabel]] = None, skip_header: int = 0, skip_footer: int = 0, skip_initial_space: bool = False, quoting: int = csv.QUOTE_MINIMAL, quote_char: str = '"', quote_double: bool = True, escape_char: tp.Optional[str] = None, thousands_char: str = '', decimal_char: str = '.', encoding: tp.Optional[str] = None, dtypes: TDtypesSpecifier = None, name: TName = None, consolidate_blocks: bool = False, store_filter: tp.Optional[StoreFilter] = None, ) -> tp.Self: ''' Create a :obj:`Frame` from the contents of the clipboard (assuming a table is stored as delimited file). Returns: :obj:`static_frame.Frame` ''' # HOTE: this uses tk for now, as this is simpler than pyperclip, as used by Pandas import tkinter as tk root = tk.Tk() root.withdraw() # using a StringIO might handle platform newline conventions sio = StringIO() sio.write(root.clipboard_get()) sio.seek(0) return cls.from_delimited(sio, delimiter=delimiter, index_depth=index_depth, index_column_first=index_column_first, index_name_depth_level=index_name_depth_level, index_constructors=index_constructors, index_continuation_token=index_continuation_token, columns_depth=columns_depth, columns_name_depth_level=columns_name_depth_level, columns_constructors=columns_constructors, columns_continuation_token=columns_continuation_token, columns_select=columns_select, skip_header=skip_header, skip_footer=skip_footer, skip_initial_space=skip_initial_space, quoting=quoting, quote_char=quote_char, quote_double=quote_double, escape_char=escape_char, thousands_char=thousands_char, decimal_char=decimal_char, encoding=encoding, dtypes=dtypes, name=name, consolidate_blocks=consolidate_blocks, store_filter=store_filter, )
#--------------------------------------------------------------------------- # Store-based constructors
[docs] @classmethod def from_xlsx(cls, fp: TPathSpecifier, *, label: TLabel = STORE_LABEL_DEFAULT, index_depth: int = 0, index_name_depth_level: tp.Optional[TDepthLevel] = None, index_constructors: TIndexCtorSpecifiers = None, columns_depth: int = 1, columns_name_depth_level: tp.Optional[TDepthLevel] = None, columns_constructors: TIndexCtorSpecifiers = None, dtypes: TDtypesSpecifier = None, name: TName = NAME_DEFAULT, consolidate_blocks: bool = False, skip_header: int = 0, skip_footer: int = 0, trim_nadir: bool = False, store_filter: tp.Optional[StoreFilter] = STORE_FILTER_DEFAULT, ) -> tp.Self: ''' Load Frame from the contents of a sheet in an XLSX workbook. Args: label: Optionally provide the sheet name from which to read. If not provided, the first sheet will be used. ''' from static_frame.core.store_config import StoreConfig from static_frame.core.store_xlsx import StoreXLSX st = StoreXLSX(fp) config = StoreConfig( index_depth=index_depth, index_name_depth_level=index_name_depth_level, index_constructors=index_constructors, columns_depth=columns_depth, columns_name_depth_level=columns_name_depth_level, columns_constructors=columns_constructors, dtypes=dtypes, consolidate_blocks=consolidate_blocks, skip_header=skip_header, skip_footer=skip_footer, trim_nadir=trim_nadir, ) f: tp.Self = st.read(label, config=config, store_filter=store_filter, container_type=cls, ) return f if name is NAME_DEFAULT else f.rename(name)
[docs] @classmethod def from_sqlite(cls, fp: TPathSpecifier, *, label: TLabel, index_depth: int = 0, index_constructors: TIndexCtorSpecifiers = None, columns_depth: int = 1, columns_constructors: TIndexCtorSpecifiers = None, dtypes: TDtypesSpecifier = None, name: TName = NAME_DEFAULT, consolidate_blocks: bool = False, # store_filter: tp.Optional[StoreFilter] = STORE_FILTER_DEFAULT, ) -> tp.Self: ''' Load Frame from the contents of a table in an SQLite database file. ''' from static_frame.core.store_config import StoreConfig from static_frame.core.store_sqlite import StoreSQLite st = StoreSQLite(fp) config = StoreConfig( index_depth=index_depth, index_constructors=index_constructors, columns_depth=columns_depth, columns_constructors=columns_constructors, dtypes=dtypes, consolidate_blocks=consolidate_blocks, ) f: tp.Self = st.read(label, config=config, container_type=cls, # store_filter=store_filter, ) return f if name is NAME_DEFAULT else f.rename(name)
[docs] @classmethod def from_duckdb(cls, fp: TPathSpecifier, *, label: TLabel, index_depth: int = 0, index_constructors: TIndexCtorSpecifiers = None, columns_depth: int = 1, columns_constructors: TIndexCtorSpecifiers = None, consolidate_blocks: bool = False, ) -> tp.Self: ''' Load Frame from the contents of a table in an SQLite database file. ''' from static_frame.core.store_config import StoreConfig from static_frame.core.store_duckdb import StoreDuckDB st = StoreDuckDB(fp) config = StoreConfig( index_depth=index_depth, index_constructors=index_constructors, columns_depth=columns_depth, columns_constructors=columns_constructors, consolidate_blocks=consolidate_blocks, ) return st.read(label, # type: ignore config=config, container_type=cls, )
[docs] @classmethod def from_hdf5(cls, fp: TPathSpecifier, *, label: TLabel, index_depth: int = 0, index_constructors: TIndexCtorSpecifiers = None, columns_depth: int = 1, columns_constructors: TIndexCtorSpecifiers = None, name: TName = NAME_DEFAULT, consolidate_blocks: bool = False, # store_filter: tp.Optional[StoreFilter] = STORE_FILTER_DEFAULT, ) -> tp.Self: ''' Load Frame from the contents of a table in an HDF5 file. ''' from static_frame.core.store_config import StoreConfig from static_frame.core.store_hdf5 import StoreHDF5 st = StoreHDF5(fp) config = StoreConfig( index_depth=index_depth, index_constructors=index_constructors, columns_depth=columns_depth, columns_constructors=columns_constructors, consolidate_blocks=consolidate_blocks, ) f: tp.Self = st.read(label, config=config, container_type=cls, # store_filter=store_filter, ) return f if name is NAME_DEFAULT else f.rename(name)
[docs] @classmethod def from_npz(cls, fp: TPathSpecifierOrBinaryIO, ) -> TFrameAny: ''' Create a :obj:`Frame` from an npz file. ''' # NOTE: `fp`` can be a bytes object return NPZFrameConverter.from_archive( constructor=cls, fp=fp, )
[docs] @classmethod def from_npy(cls, fp: TPathSpecifier, ) -> TFrameAny: ''' Create a :obj:`Frame` from an directory of npy files. Args: fp: The path to the NPY directory. ''' return NPYFrameConverter.from_archive( constructor=cls, fp=fp, )
[docs] @classmethod def from_npy_mmap(cls, fp: TPathSpecifier, ) -> tp.Tuple[TFrameAny, tp.Callable[[], None]]: ''' Create a :obj:`Frame` from an directory of npy files using memory maps. Args: fp: The path to the NPY directory. Returns: A tuple of :obj:`Frame` and the callable needed to close the open memory map objects. On some platforms this must be called before the process exits. ''' return NPYFrameConverter.from_archive_mmap( constructor=cls, fp=fp, )
[docs] @classmethod def from_pickle(cls, fp: TPathSpecifier, ) -> TFrameAny: ''' Create a :obj:`Frame` from a pickle file. The pickle module is not secure. Only unpickle data you trust. Args: fp: The path to the pickle file. ''' with open(fp, 'rb')as file: f = pickle.load(file) return frame_to_frame(f, cls)
#---------------------------------------------------------------------------
[docs] @classmethod @doc_inject() def from_pandas(cls, value: 'pandas.DataFrame', *, index: TIndexInitOrAuto = None, index_constructor: TIndexCtorSpecifier = None, columns: TIndexInitOrAuto = None, columns_constructor: TIndexCtorSpecifier = None, dtypes: TDtypesSpecifier = None, name: TName = NAME_DEFAULT, consolidate_blocks: bool = False, own_data: bool = False ) -> tp.Self: '''Given a Pandas DataFrame, return a Frame. Args: value: Pandas DataFrame. {index_constructor} {columns_constructor} dtypes: {consolidate_blocks} {own_data} Returns: :obj:`Frame` ''' # NOTE: for specifying intra index types within IndexHierarchy, a partialed constructor must be used import pandas if not isinstance(value, pandas.DataFrame): raise ErrorInitFrame(f'from_pandas must be called with a Pandas DataFrame object, not: {type(value)}') get_col_dtype = None if dtypes is None else get_col_dtype_factory( dtypes, value.columns.values, # pyright: ignore # should be an array ) # create generator of contiguous typed data # calling .values will force type unification across all columns def gen() -> tp.Iterator[TNDArrayAny]: pairs = enumerate(value.dtypes.values) column_start, dtype_current = next(pairs) column_last = column_start yield_block = False for column, dtype in pairs: # iloc column values try: if dtype != dtype_current: yield_block = True except TypeError: #pragma: no cover # NOTE: raises data type not understood, happens with pd datatypes to np dtypes in pd >= 1, but fixed in later versions of pd and presently not reproducible yield_block = True #pragma: no cover if yield_block: column_end = column_last + 1 part = value.iloc[NULL_SLICE, slice(column_start, column_end)] yield from df_slice_to_arrays(part=part, column_ilocs=range(column_start, column_end), get_col_dtype=get_col_dtype, own_data=own_data, ) column_start = column dtype_current = dtype yield_block = False column_last = column # always have left over column_end = column_last + 1 part = value.iloc[NULL_SLICE, slice(column_start, column_end)] yield from df_slice_to_arrays(part=part, column_ilocs=range(column_start, column_end), get_col_dtype=get_col_dtype, own_data=own_data, ) if value.size == 0: blocks = TypeBlocks.from_zero_size_shape(value.shape, get_col_dtype) elif consolidate_blocks: blocks = TypeBlocks.from_blocks(TypeBlocks.consolidate_blocks(gen())) else: blocks = TypeBlocks.from_blocks(gen()) if name is not NAME_DEFAULT: pass # keep elif 'name' not in value.columns and hasattr(value, 'name'): # avoid getting a Series if a column name = value.name else: name = None # do not keep as NAME_DEFAULT own_index = False if index is IndexAutoFactory: index = None elif index is not None: pass elif isinstance(value.index, pandas.MultiIndex): index = IndexHierarchy.from_pandas(value.index) own_index = True else: index = Index.from_pandas(value.index) own_index = index_constructor is None own_columns = False if columns is IndexAutoFactory: columns = None elif columns is not None: pass elif isinstance(value.columns, pandas.MultiIndex): columns = cls._COLUMNS_HIERARCHY_CONSTRUCTOR.from_pandas(value.columns) own_columns = True else: columns = cls._COLUMNS_CONSTRUCTOR.from_pandas(value.columns) own_columns = columns_constructor is None return cls(blocks, index=index, columns=columns, name=name, index_constructor=index_constructor, columns_constructor=columns_constructor, own_data=True, own_index=own_index, own_columns=own_columns, )
[docs] @classmethod @doc_inject(selector='from_any') def from_arrow(cls, value: 'pyarrow.Table', *, index_depth: int = 0, index_name_depth_level: tp.Optional[TDepthLevel] = None, index_constructors: TIndexCtorSpecifiers = None, columns_depth: int = 1, columns_name_depth_level: tp.Optional[TDepthLevel] = None, columns_constructors: TIndexCtorSpecifiers = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, ) -> tp.Self: '''Realize a ``Frame`` from an Arrow Table. Args: value: A :obj:`pyarrow.Table` instance. {index_depth} {columns_depth} {dtypes} {name} {consolidate_blocks} Returns: :obj:`Frame` ''' # this is similar to from_structured_array index_start_pos = -1 # will be ignored index_end_pos = -1 if index_depth > 0: index_start_pos = 0 index_end_pos = index_start_pos + index_depth - 1 apex_labels: tp.Optional[tp.Sequence[str]] = [] index_arrays: tp.Optional[tp.Sequence[TNDArrayAny]] = [] else: apex_labels = None index_arrays = None columns_labels: tp.List[TLabel] = [] # by using value.columns_names, we expose access to the index arrays, which is deemed desirable as that is what we do in from_delimited get_col_dtype = None if dtypes is None else get_col_dtype_factory( dtypes, value.column_names) def blocks() -> tp.Iterator[TNDArrayAny]: for col_idx, (name, chunked_array) in enumerate( zip(value.column_names, value.columns)): # NOTE: name will be the encoded columns representation, or auto increment integers; if an IndexHierarchy, will contain all depths: "['a' 1]" # This creates a Series with an index; better to find a way to go only to numpy, but does not seem available on ChunkedArray, even with pyarrow==0.16.0 series = chunked_array.to_pandas( date_as_object=False, # get an np array self_destruct=True, # documented as "experimental" ignore_metadata=True, ) array_final = pandas_to_numpy(series, own_data=True) if get_col_dtype: # ordered values will include index positions dtype = get_col_dtype(col_idx) #pylint: disable=E1102 if dtype is not None: array_final = array_final.astype(dtype) array_final.flags.writeable = False is_index_col = (col_idx >= index_start_pos and col_idx <= index_end_pos) if is_index_col: index_arrays.append(array_final) # type: ignore apex_labels.append(name) # type: ignore continue if not is_index_col and columns_depth > 0: # only accumulate column names after index extraction columns_labels.append(name) yield array_final if consolidate_blocks: data = TypeBlocks.from_blocks(TypeBlocks.consolidate_blocks(blocks())) else: data = TypeBlocks.from_blocks(blocks()) # will be none if name_depth_level is None columns_name = None if not apex_labels else apex_to_name(rows=(apex_labels,), depth_level=columns_name_depth_level, axis=1, axis_depth=columns_depth, ) columns_default_constructor: TIndexCtor if columns_depth <= 1: columns_default_constructor = partial( cls._COLUMNS_CONSTRUCTOR, name=columns_name) else: columns_default_constructor = partial( cls._COLUMNS_HIERARCHY_CONSTRUCTOR.from_labels_delimited, delimiter=' ', name=columns_name) columns, own_columns = index_from_optional_constructors( columns_labels, depth=columns_depth, default_constructor=columns_default_constructor, explicit_constructors=columns_constructors, # cannot supply name ) index_name = None if not apex_labels else apex_to_name(rows=(apex_labels,), depth_level=index_name_depth_level, axis=0, axis_depth=index_depth, ) index_default_constructor: TIndexCtor # pyright: ignore if index_depth == 1: index_values = index_arrays[0] # type: ignore index_default_constructor = partial(Index, name=index_name) # pyright: ignore else: # > 1 index_values = index_arrays def index_default_constructor(values: tp.Iterable[TNDArrayAny], *, index_constructors: TIndexCtorSpecifiers = None, ) -> IndexBase: return IndexHierarchy._from_type_blocks( TypeBlocks.from_blocks(values), name=index_name, index_constructors=index_constructors, own_blocks=True, ) index, own_index = index_from_optional_constructors( index_values, # pyright: ignore depth=index_depth, default_constructor=index_default_constructor, explicit_constructors=index_constructors, # cannot supply name ) return cls( data=data, columns=columns, index=index, name=name, own_data=True, own_columns=own_columns, own_index=own_index, )
[docs] @classmethod @doc_inject(selector='from_any') def from_parquet(cls, fp: TPathSpecifier, *, index_depth: int = 0, index_name_depth_level: tp.Optional[TDepthLevel] = None, index_constructors: TIndexCtorSpecifiers = None, columns_depth: int = 1, columns_name_depth_level: tp.Optional[TDepthLevel] = None, columns_constructors: TIndexCtorSpecifiers = None, columns_select: tp.Optional[tp.Iterable[str]] = None, dtypes: TDtypesSpecifier = None, name: TLabel = None, consolidate_blocks: bool = False, ) -> tp.Self: ''' Realize a ``Frame`` from a Parquet file. Args: {fp} {index_depth} index_name_depth_level: index_constructors: {columns_depth} columns_name_depth_level: columns_constructors: {columns_select} {dtypes} {name} {consolidate_blocks} ''' import pyarrow.parquet as pq from pyarrow.lib import ArrowInvalid # pylint: disable=E0611 if columns_select and index_depth != 0: raise ErrorInitFrame(f'cannot load index_depth {index_depth} when columns_select is specified.') fpf: str = path_filter(fp) # type: ignore if columns_select is not None and not isinstance(columns_select, list): columns_select = list(columns_select) # NOTE: the order of columns_select will determine their order try: table = pq.read_table(fp, columns=columns_select, use_pandas_metadata=False, ) except ArrowInvalid: # pragma: no cover # support loading parquet files saved with pyarrow<1.0 # https://github.com/apache/arrow/issues/32660 table = pq.read_table(fp, # pragma: no cover columns=columns_select, use_pandas_metadata=False, use_legacy_dataset=True, ) if columns_select: # pq.read_table will silently accept requested columns that are not found; this can be identified if we got back fewer columns than requested if len(table.column_names) < len(columns_select): missing = set(columns_select) - set(table.column_names) raise ErrorInitFrame(f'cannot load all columns in columns_select: missing {missing}') return cls.from_arrow(table, index_depth=index_depth, index_name_depth_level=index_name_depth_level, index_constructors=index_constructors, columns_depth=columns_depth, columns_name_depth_level=columns_name_depth_level, columns_constructors=columns_constructors, dtypes=dtypes, consolidate_blocks=consolidate_blocks, name=name )
[docs] @staticmethod @doc_inject(selector='constructor_frame') def from_msgpack( msgpack_data: bytes ) -> TFrameAny: '''Frame constructor from an in-memory binary object formatted as a msgpack. Args: msgpack_data: A binary msgpack object, encoding a Frame as produced from to_msgpack() ''' import msgpack # type: ignore import msgpack_numpy # type: ignore def decode(obj: tp.Dict[bytes, tp.Any], #dict produced by msgpack-python chain: tp.Callable[[tp.Any], str] = msgpack_numpy.decode, ) -> object: if b'sf' in obj: cls_name = obj[b'sf'] cls = ContainerMap.get(cls_name) if issubclass(cls, Frame): blocks = unpackb(obj[b'blocks']) return cls( blocks, name=obj[b'name'], index=unpackb(obj[b'index']), columns=unpackb(obj[b'columns']), own_data=True, ) elif issubclass(cls, IndexHierarchy): index_constructors: tp.List[tp.Type[TIndexAny]] = [ # pyright: ignore ContainerMap.get(cls_name) for cls_name in unpackb( obj[b'index_constructors'])] blocks = unpackb(obj[b'blocks']) return cls._from_type_blocks( blocks=blocks, name=obj[b'name'], index_constructors=index_constructors, own_blocks=True) elif issubclass(cls, Index): data = unpackb(obj[b'data']) return cls( data, name=obj[b'name']) elif issubclass(cls, TypeBlocks): blocks = unpackb(obj[b'blocks']) return cls.from_blocks(blocks) elif b'np' in obj: #Overridden msgpack-numpy datatypes data = unpackb(obj[b'data']) typename = obj[b'dtype'].split('[', 1)[0] if typename in ['datetime64', 'timedelta64', '>m8', '>M8']: array = np.array(data, dtype=obj[b'dtype']) elif typename == 'object_': array = np.array( list(map(element_decode, data)), dtype=DTYPE_OBJECT) array.flags.writeable = False return array return chain(obj) unpackb = partial(msgpack.unpackb, object_hook=decode) element_decode = partial(MessagePackElement.decode, unpackb=unpackb) return unpackb(msgpack_data) # type: ignore
#---------------------------------------------------------------------------
[docs] def __init__(self, data: TFrameInitializer = FRAME_INITIALIZER_DEFAULT, # type: ignore *, index: TIndexInitOrAuto = None, columns: TIndexInitOrAuto = None, name: TName = NAME_DEFAULT, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, own_data: bool = False, own_index: bool = False, own_columns: bool = False, ) -> None: ''' Initializer. Args: data: Default Frame initialization requires typed data such as a NumPy array. All other initialization should use specialized constructors. {index} {columns} index_constructor: columns_constructor: {own_data} {own_index} {own_columns} ''' #----------------------------------------------------------------------- # blocks assignment blocks_constructor = _NA_BLOCKS_CONSTRCTOR if data.__class__ is TypeBlocks: if own_data: self._blocks = data # type: ignore else: # assume we need to create a new TB instance; this will not copy underlying arrays as all blocks are immutable self._blocks = TypeBlocks.from_blocks(data._blocks) # type: ignore elif data.__class__ is np.ndarray: if own_data: data.flags.writeable = False # type: ignore # from_blocks will apply immutable filter self._blocks = TypeBlocks.from_blocks(data) # type: ignore elif data is FRAME_INITIALIZER_DEFAULT: # NOTE: this will not catch all cases where index or columns is empty, as they might be iterators; those cases will be handled below. def blocks_constructor(shape: tp.Tuple[int, int]) -> None: #pylint: disable=E0102 if shape[0] > 0 and shape[1] > 0: # if fillable and we still have default initializer, this is a problem raise RuntimeError('must supply a non-default value for constructing a Frame with non-zero size.') self._blocks = TypeBlocks.from_zero_size_shape(shape) elif isinstance(data, Frame): self._blocks = data._blocks.copy() if index is None and index_constructor is None: # set up for direct assignment below; index is always immutable index = data.index own_index = True if columns is None and columns_constructor is None: # cannot own, but can let constructors handle potential mutability columns = data.columns if name is NAME_DEFAULT: name = data.name elif isinstance(data, dict): raise ErrorInitFrame('use Frame.from_dict to create a Frame from a mapping.') elif isinstance(data, Series): raise ErrorInitFrame('use Frame.from_series to create a Frame from a Series.') else: raise ErrorInitFrame('use Frame.from_element, Frame.from_elements, or Frame.from_records to create a Frame from 0, 1, or 2 dimensional untyped data (respectively).') # counts can be zero (not None) if _block was created but is empty row_count, col_count = (self._blocks.shape # pyright: ignore if blocks_constructor is _NA_BLOCKS_CONSTRCTOR else (None, None)) self._name = None if name is NAME_DEFAULT else name_filter(name) # pyright: ignore #----------------------------------------------------------------------- # columns assignment if own_columns: self._columns = columns # type: ignore col_count = len(self._columns) # pyright: ignore elif index_constructor_empty(columns): col_count = 0 if col_count is None else col_count self._columns = IndexAutoFactory.from_optional_constructor( col_count, default_constructor=self._COLUMNS_CONSTRUCTOR, explicit_constructor=columns_constructor ) else: try: self._columns = index_from_optional_constructor(columns, default_constructor=self._COLUMNS_CONSTRUCTOR, explicit_constructor=columns_constructor ) except ErrorInitIndex as e: # show this as a column exception raise ErrorInitColumns(str(e)) from None col_count = len(self._columns) # check after creation, as we cannot determine from the constructor (it might be a method on a class) if self._COLUMNS_CONSTRUCTOR.STATIC != self._columns.STATIC: # pyright: ignore raise ErrorInitFrame(f'Supplied `columns_constructor` does not match required static attribute: {self._COLUMNS_CONSTRUCTOR.STATIC}') #----------------------------------------------------------------------- # index assignment if own_index: self._index = index # type: ignore row_count = len(self._index) # pyright: ignore elif index_constructor_empty(index): row_count = 0 if row_count is None else row_count self._index = IndexAutoFactory.from_optional_constructor( row_count, default_constructor=Index, explicit_constructor=index_constructor, ) else: self._index = index_from_optional_constructor(index, default_constructor=Index, explicit_constructor=index_constructor, ) row_count = len(self._index) if not self._index.STATIC: # pyright: ignore raise ErrorInitFrame('non-static index cannot be assigned to Frame') #----------------------------------------------------------------------- # final evaluation if blocks_constructor is not _NA_BLOCKS_CONSTRCTOR: # if we have a blocks_constructor if is because data remained FRAME_INITIALIZER_DEFAULT blocks_constructor((row_count, col_count)) # final check of block/index coherence block_row, block_col = self._blocks.shape if block_row != row_count: # pyright: ignore # row count might be 0 for an empty DF raise ErrorInitFrame( f'Index has incorrect size (got {block_row}, expected {row_count})' # pyright: ignore ) if block_col != col_count: # pyright: ignore raise ErrorInitFrame( f'Columns has incorrect size (got {block_col}, expected {col_count})' # pyright: ignore )
#---------------------------------------------------------------------------
[docs] def __deepcopy__(self, memo: tp.Dict[int, tp.Any]) -> tp.Self: obj = self.__class__.__new__(self.__class__) obj._blocks = deepcopy(self._blocks, memo) obj._columns = deepcopy(self._columns, memo) obj._index = deepcopy(self._index, memo) obj._name = self._name # should be hashable/immutable memo[id(self)] = obj return obj
# def __copy__(self) -> TFrameAny: # ''' # Return shallow copy of this Frame. # ''' # def copy(self)-> TFrameAny: # ''' # Return shallow copy of this Frame. # ''' # return self.__copy__() #type: ignore def _memory_label_component_pairs(self, ) -> tp.Iterable[tp.Tuple[str, tp.Any]]: return (('Name', self._name), ('Index', self._index), ('Columns', self._columns), ('Blocks', self._blocks), ) #--------------------------------------------------------------------------- # external protocols
[docs] def __dataframe__(self, nan_as_null: bool = False, allow_copy: bool = True, ) -> DFIDataFrame: '''Return a data-frame interchange protocol compliant object. See https://data-apis.org/dataframe-protocol/latest for more information. ''' return DFIDataFrame(self, nan_as_null=nan_as_null, allow_copy=allow_copy, recast_blocks=True, )
#--------------------------------------------------------------------------- # name interface @property @doc_inject() def name(self) -> TName: '''{}''' return self._name
[docs] def rename(self, name: TName = NAME_DEFAULT, *, index: TName = NAME_DEFAULT, columns: TName = NAME_DEFAULT, ) -> tp.Self: ''' Return a new Frame with an updated name attribute. Optionally update the name attribute of ``index`` and ``columns``. ''' name = self.name if name is NAME_DEFAULT else name i = self._index if index is NAME_DEFAULT else self._index.rename(index) c = self._columns if columns is NAME_DEFAULT else self._columns.rename(columns) return self.__class__(self._blocks.copy(), index=i, columns=c, # let constructor handle if GO name=name, own_data=True, own_index=True)
#--------------------------------------------------------------------------- # interfaces @property def loc(self) -> InterGetItemLocCompoundReduces[TFrameAny]: return InterGetItemLocCompoundReduces(self._extract_loc) @property def iloc(self) -> InterGetItemILocCompoundReduces[TFrameAny]: return InterGetItemILocCompoundReduces(self._extract_iloc) @property def bloc(self) -> InterfaceGetItemBLoc[TSeriesAny]: return InterfaceGetItemBLoc(self._extract_bloc) @property def drop(self) -> InterfaceSelectTrio[TFrameAny]: return InterfaceSelectTrio( # type: ignore # NOTE: does not reuturn Frame, but a delegate func_iloc=self._drop_iloc, func_loc=self._drop_loc, func_getitem=self._drop_getitem) @property def mask(self) -> InterfaceSelectTrio[TFrameAny]: return InterfaceSelectTrio( # type: ignore # NOTE: does not return Frame, but a delegate func_iloc=self._extract_iloc_mask, func_loc=self._extract_loc_mask, func_getitem=self._extract_getitem_mask) @property def masked_array(self) -> InterfaceSelectTrio[TFrameAny]: return InterfaceSelectTrio( # type: ignore func_iloc=self._extract_iloc_masked_array, func_loc=self._extract_loc_masked_array, func_getitem=self._extract_getitem_masked_array) # NOTE: the typing needs work as it does not return `Frame`, but FrameAssignILoc @property def assign(self) -> InterfaceAssignQuartet[FrameAssignILoc]: return InterfaceAssignQuartet( # type: ignore func_iloc=self._extract_iloc_assign, func_loc=self._extract_loc_assign, func_getitem=self._extract_getitem_assign, func_bloc=self._extract_bloc_assign, delegate=FrameAssign, ) @property @doc_inject(select='astype') def astype(self) -> InterfaceFrameAsType[TFrameAny]: ''' Retype one or more columns. When used as a function, can be used to retype the entire ``Frame``. Alternatively, when used as a ``__getitem__`` interface, loc-style column selection can be used to type one or more coloumns. Args: {dtype} ''' # NOTE: this uses the same function for __call__ and __getitem__; call simply uses the NULL_SLICE and applys the dtype argument immediately return InterfaceFrameAsType(func_getitem=self._extract_getitem_astype) @property def consolidate(self) -> InterfaceConsolidate[TFrameAny]: ''' Consolidate one or more columns. When used as a function, can be used to retype the entire ``Frame``. Alternatively, when used as a ``__getitem__`` interface, loc-style column selection can be used to consolidate one or more coloumns. ''' return InterfaceConsolidate( container=self, func_getitem=self._extract_getitem_consolidate, ) #--------------------------------------------------------------------------- # via interfaces @property def via_values(self) -> InterfaceValues[TFrameAny]: ''' Interface for applying functions to values (as arrays) in this container. Args: consolidate_blocks: Group adjacent same-typed arrays into 2D arrays. unify_blocks: Group all arrays into single array, re-typing to an appropriate dtype. dtype: specify a dtype to be used in conversion before consolidation or unification, and before function application. ''' return InterfaceValues(self) @property def via_str(self) -> InterfaceString[TFrameAny]: ''' Interface for applying string methods to elements in this container. ''' def blocks_to_container(blocks: tp.Iterator[TNDArrayAny]) -> TFrameAny: tb = TypeBlocks.from_blocks(blocks) return self.__class__( tb, index=self._index, columns=self._columns, name=self._name, own_index=True, own_data=True, ) return InterfaceString( blocks=self._blocks._blocks, blocks_to_container=blocks_to_container, ndim=self._NDIM, labels=self._columns, ) @property def via_dt(self) -> InterfaceDatetime[TFrameAny]: ''' Interface for applying datetime properties and methods to elements in this container. ''' # NOTE: we only process object dt64 types; strings have to be converted explicitly def blocks_to_container(blocks: tp.Iterator[TNDArrayAny]) -> TFrameAny: tb = TypeBlocks.from_blocks(blocks) return self.__class__( tb, index=self._index, columns=self._columns, name=self._name, own_index=True, own_data=True, ) return InterfaceDatetime( blocks=self._blocks._blocks, blocks_to_container=blocks_to_container, ) @property def via_T(self) -> InterfaceTranspose[TFrameAny]: ''' Interface for using binary operators with one-dimensional sequences, where the opperand is applied column-wise. ''' return InterfaceTranspose( container=self, )
[docs] def via_fill_value(self, fill_value: tp.Any = np.nan, ) -> InterfaceFillValue[TFrameAny]: ''' Interface for using binary operators and methods with a pre-defined fill value. ''' return InterfaceFillValue( container=self, fill_value=fill_value, )
[docs] def via_re(self, pattern: str, flags: int = 0, ) -> InterfaceRe[TFrameAny]: ''' Interface for applying regular expressions to elements in this container. ''' def blocks_to_container(blocks: tp.Iterator[TNDArrayAny]) -> TFrameAny: tb = TypeBlocks.from_blocks(blocks) return self.__class__( tb, index=self._index, columns=self._columns, name=self._name, own_index=True, own_data=True, ) return InterfaceRe( blocks=self._blocks._blocks, blocks_to_container=blocks_to_container, pattern=pattern, flags=flags, )
#--------------------------------------------------------------------------- # iterators @property def iter_array(self) -> IterNodeAxis[TFrameAny]: ''' Iterator of :obj:`np.array`, where arrays are drawn from columns (axis=0) or rows (axis=1) ''' return IterNodeAxis( container=self, function_values=self._axis_array, function_items=self._axis_array_items, yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.SERIES_VALUES ) @property def iter_array_items(self) -> IterNodeAxis[TFrameAny]: ''' Iterator of pairs of label, :obj:`np.array`, where arrays are drawn from columns (axis=0) or rows (axis=1) ''' return IterNodeAxis( container=self, function_values=self._axis_array, function_items=self._axis_array_items, yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.SERIES_VALUES ) @property def iter_tuple(self) -> IterNodeConstructorAxis[TFrameAny]: ''' Iterator of :obj:`NamedTuple`, where tuples are drawn from columns (axis=0) or rows (axis=1). An optional ``constructor`` callable can be used to provide a :obj:`NamedTuple` class (or any other constructor called with a single iterable) to be used to create each yielded axis value. ''' return IterNodeConstructorAxis( container=self, function_values=self._axis_tuple, function_items=self._axis_tuple_items, yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.SERIES_VALUES ) @property def iter_tuple_items(self) -> IterNodeConstructorAxis[TFrameAny]: ''' Iterator of pairs of label, :obj:`NamedTuple`, where tuples are drawn from columns (axis=0) or rows (axis=1) ''' return IterNodeConstructorAxis( container=self, function_values=self._axis_tuple, function_items=self._axis_tuple_items, yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.SERIES_VALUES ) @property def iter_series(self) -> IterNodeAxis[TFrameAny]: ''' Iterator of :obj:`Series`, where :obj:`Series` are drawn from columns (axis=0) or rows (axis=1) ''' return IterNodeAxis( container=self, function_values=self._axis_series, function_items=self._axis_series_items, yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.SERIES_VALUES ) @property def iter_series_items(self) -> IterNodeAxis[TFrameAny]: ''' Iterator of pairs of label, :obj:`Series`, where :obj:`Series` are drawn from columns (axis=0) or rows (axis=1) ''' return IterNodeAxis( container=self, function_values=self._axis_series, function_items=self._axis_series_items, yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.SERIES_VALUES ) #--------------------------------------------------------------------------- @property def iter_group(self) -> IterNodeGroupAxis[TFrameAny]: ''' Iterator of :obj:`Frame` grouped by unique values found in one or more columns (axis=0) or rows (axis=1). ''' return IterNodeGroupAxis( container=self, function_values=self._axis_group_loc, function_items=self._axis_group_loc_items, yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_VALUES, ) @property def iter_group_items(self) -> IterNodeGroupAxis[TFrameAny]: ''' Iterator of pairs of label, :obj:`Frame` grouped by unique values found in one or more columns (axis=0) or rows (axis=1). ''' return IterNodeGroupAxis( container=self, function_values=self._axis_group_loc, function_items=self._axis_group_loc_items, yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_VALUES, ) #--------------------------------------------------------------------------- @property def iter_group_array(self) -> IterNodeGroupAxis[TFrameAny]: ''' Iterator of ``np.ndarray`` grouped by unique values found in one or more columns (axis=0) or rows (axis=1). ''' return IterNodeGroupAxis( container=self, function_values=partial(self._axis_group_loc, as_array=True), function_items=partial(self._axis_group_loc_items, as_array=True), yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_VALUES, ) @property def iter_group_array_items(self) -> IterNodeGroupAxis[TFrameAny]: ''' Iterator of pairs of label, ``np.ndarray`` grouped by unique values found in one or more columns (axis=0) or rows (axis=1). ''' return IterNodeGroupAxis( container=self, function_values=partial(self._axis_group_loc, as_array=True), function_items=partial(self._axis_group_loc_items, as_array=True), yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_VALUES, ) #--------------------------------------------------------------------------- @property def iter_group_labels(self) -> IterNodeDepthLevelAxis[TFrameAny]: ''' Iterator of :obj:`Frame` grouped by unique labels found in one or more index depths (axis=0) or columns depths (axis=1). ''' return IterNodeDepthLevelAxis( container=self, function_values=self._axis_group_labels, function_items=self._axis_group_labels_items, yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_LABELS, ) @property def iter_group_labels_items(self) -> IterNodeDepthLevelAxis[TFrameAny]: ''' Iterator of pairs of label, :obj:`Frame` grouped by unique labels found in one or more index depths (axis=0) or columns depths (axis=1). ''' return IterNodeDepthLevelAxis( container=self, function_values=self._axis_group_labels, function_items=self._axis_group_labels_items, yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_LABELS, ) #--------------------------------------------------------------------------- @property def iter_group_labels_array(self) -> IterNodeDepthLevelAxis[TFrameAny]: ''' Iterator of ``np.ndarray`` grouped by unique labels found in one or more index depths (axis=0) or columns depths (axis=1). ''' return IterNodeDepthLevelAxis( container=self, function_values=partial(self._axis_group_labels, as_array=True), function_items=partial(self._axis_group_labels_items, as_array=True), yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_LABELS, ) @property def iter_group_labels_array_items(self) -> IterNodeDepthLevelAxis[TFrameAny]: ''' Iterator of pairs of label, ``np.ndarray`` grouped by unique labels found in one or more index depths (axis=0) or columns depths (axis=1). ''' return IterNodeDepthLevelAxis( container=self, function_values=partial(self._axis_group_labels, as_array=True), function_items=partial(self._axis_group_labels_items, as_array=True), yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_LABELS, ) #--------------------------------------------------------------------------- @property def iter_group_other(self) -> IterNodeGroupOtherReducible[TFrameAny]: ''' Iterator of :obj:`Frame` grouped by unique values found in a supplied container. ''' return IterNodeGroupOtherReducible( container=self, function_values=self._axis_group_other, function_items=self._axis_group_other_items, yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_VALUES, ) @property def iter_group_other_items(self) -> IterNodeGroupOtherReducible[TFrameAny]: ''' Iterator of :obj:`Frame` grouped by unique values found in a supplied container. ''' return IterNodeGroupOtherReducible( container=self, function_values=self._axis_group_other, function_items=self._axis_group_other_items, yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_VALUES, ) #--------------------------------------------------------------------------- @property def iter_group_other_array(self) -> IterNodeGroupOtherReducible[TFrameAny]: ''' Iterator of :obj:`Frame` grouped by unique values found in a supplied container. ''' return IterNodeGroupOtherReducible( container=self, function_values=partial(self._axis_group_other, as_array=True), function_items=partial(self._axis_group_other_items, as_array=True), yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_VALUES, ) @property def iter_group_other_array_items(self) -> IterNodeGroupOtherReducible[TFrameAny]: ''' Iterator of :obj:`Frame` grouped by unique values found in a supplied container. ''' return IterNodeGroupOtherReducible( container=self, function_values=partial(self._axis_group_other, as_array=True), function_items=partial(self._axis_group_other_items, as_array=True), yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.SERIES_ITEMS_GROUP_VALUES, ) #--------------------------------------------------------------------------- @property @doc_inject(selector='window') def iter_window(self) -> IterNodeWindowReducible[TFrameAny]: ''' Iterator of windowed values, where values are given as a :obj:`Frame`. {args} ''' function_values = partial(self._axis_window, as_array=False) function_items = partial(self._axis_window_items, as_array=False) return IterNodeWindowReducible( container=self, function_values=function_values, function_items=function_items, yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.SERIES_ITEMS, ) @property @doc_inject(selector='window') def iter_window_items(self) -> IterNodeWindowReducible[TFrameAny]: ''' Iterator of pairs of label, windowed values, where values are given as a :obj:`Frame`. {args} ''' function_values = partial(self._axis_window, as_array=False) function_items = partial(self._axis_window_items, as_array=False) return IterNodeWindowReducible( container=self, function_values=function_values, function_items=function_items, yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.SERIES_ITEMS, ) @property @doc_inject(selector='window') def iter_window_array(self) -> IterNodeWindowReducible[TFrameAny]: ''' Iterator of windowed values, where values are given as a :obj:`np.array`. {args} ''' function_values = partial(self._axis_window, as_array=True) function_items = partial(self._axis_window_items, as_array=True) return IterNodeWindowReducible( container=self, function_values=function_values, function_items=function_items, yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.SERIES_ITEMS, ) @property @doc_inject(selector='window') def iter_window_array_items(self) -> IterNodeWindowReducible[TFrameAny]: ''' Iterator of pairs of label, windowed values, where values are given as a :obj:`np.array`. {args} ''' function_values = partial(self._axis_window, as_array=True) function_items = partial(self._axis_window_items, as_array=True) return IterNodeWindowReducible( container=self, function_values=function_values, function_items=function_items, yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.SERIES_ITEMS, ) #--------------------------------------------------------------------------- @property def iter_element(self) -> IterNodeAxisElement[TFrameAny]: '''Iterator of elements, ordered by row then column. ''' return IterNodeAxisElement( container=self, function_values=self._iter_element_loc, function_items=self._iter_element_loc_items, yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.FRAME_ELEMENTS ) @property def iter_element_items(self) -> IterNodeAxisElement[TFrameAny]: '''Iterator of pairs of label, element, where labels are pairs of index, columns labels, ordered by row then column. ''' return IterNodeAxisElement( container=self, function_values=self._iter_element_loc, function_items=self._iter_element_loc_items, yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.FRAME_ELEMENTS ) #--------------------------------------------------------------------------- @property def reduce(self) -> ReduceDispatchAligned: '''Return a ``ReduceAligned`` interface, permitting function application per column or on entire containers. ''' from static_frame.core.reduce import ReduceDispatchAligned return ReduceDispatchAligned( ((self._name, self),), self._columns, yield_type=IterNodeType.VALUES, ) #--------------------------------------------------------------------------- # index manipulation def _reindex_other_like_iloc(self, value: tp.Union[TSeriesAny, TFrameAny], iloc_key: TILocSelectorCompound, is_series: bool, is_frame: bool, fill_value: tp.Any = np.nan, ) -> tp.Union[TSeriesAny, TFrameAny]: '''Given a value that is a Series or Frame, reindex it to the index components, drawn from this Frame, that are specified by the iloc_key. ''' # assert iloc_key.__class__ is tuple # must already be normalized assert is_series ^ is_frame # one must be True row_key: TILocSelector col_key: TILocSelector row_key, col_key = iloc_key # type: ignore # within this frame, get Index objects by extracting based on passed-in iloc keys # NOTE: NM (not many) means an integer or label nm_row, nm_column = self._extract_axis_not_multi(row_key, col_key) v: None | TSeriesAny | TFrameAny = None col_key_many: TILocSelectorMany row_key_many: TILocSelectorMany if nm_row and not nm_column: # only column is multi selection, reindex by column if is_series: col_key_many = col_key # type: ignore[assignment] v = value.reindex(self._columns._extract_iloc(col_key_many), fill_value=fill_value) elif not nm_row and nm_column: # only row is multi selection, reindex by index if is_series: row_key_many = row_key # type: ignore[assignment] v = value.reindex(self._index._extract_iloc(row_key_many), fill_value=fill_value) elif not nm_row and not nm_column: # both multi, must be a Frame if is_frame: col_key_many = col_key # type: ignore[assignment] row_key_many = row_key # type: ignore[assignment] target_column_index = self._columns._extract_iloc(col_key_many) target_row_index = self._index._extract_iloc(row_key_many) # this will use the default fillna type, which may or may not be what is wanted v = value.reindex( # type: ignore index=target_row_index, columns=target_column_index, # pyright: ignore fill_value=fill_value) if v is None: raise RuntimeError(f'cannot assign {value.__class__.__name__} with key configuration: {nm_row}, {nm_column}') return v
[docs] @doc_inject(selector='reindex', class_name='Frame') def reindex(self, index: tp.Optional[TIndexInitializer] = None, columns: tp.Optional[TIndexInitializer] = None, *, fill_value: tp.Any = np.nan, own_index: bool = False, own_columns: bool = False, check_equals: bool = True, ) -> tp.Self: ''' {doc} Args: index: {index_initializer} columns: {index_initializer} {fill_value} {own_index} {own_columns} check_equals: ''' if index is None and columns is None: raise RuntimeError('must specify one of index or columns') if index is not None: if not own_index: index = index_from_optional_constructor(index, default_constructor=Index) if check_equals and self._index.equals(index): index_ic = None else: index_ic = IndexCorrespondence.from_correspondence(self._index, index) # type: ignore else: index = self._index index_ic = None # index can always be owned by this point, as self._index is STATIC, or we have created a new Index, or we have bbeen given own_index own_index_frame = True columns_owned: IndexBase if columns is not None: if not own_columns: columns_owned = index_from_optional_constructor(columns, default_constructor=self._COLUMNS_CONSTRUCTOR) else: columns_owned = columns # type: ignore if check_equals and self._columns.equals(columns): columns_ic = None else: columns_ic = IndexCorrespondence.from_correspondence(self._columns, columns_owned) own_columns_frame = True else: columns_owned = self._columns columns_ic = None own_columns_frame = self._COLUMNS_CONSTRUCTOR.STATIC # if fill_value is a non-element, call get_col_fill_value_factory with the new index/columns, not the old if is_fill_value_factory_initializer(fill_value): get_col_fill_value = get_col_fill_value_factory(fill_value, columns=columns_owned) return self.__class__( TypeBlocks.from_blocks( self._blocks.resize_blocks_by_callable( index_ic=index_ic, columns_ic=columns_ic, fill_value=get_col_fill_value), shape_reference=(len(index), len(columns_owned)) #type: ignore ), index=index, columns=columns_owned, name=self._name, own_data=True, own_index=own_index_frame, own_columns=own_columns_frame ) return self.__class__( TypeBlocks.from_blocks( self._blocks.resize_blocks_by_element( index_ic=index_ic, columns_ic=columns_ic, fill_value=fill_value), shape_reference=(len(index), len(columns_owned)) #type: ignore ), index=index, columns=columns_owned, name=self._name, own_data=True, own_index=own_index_frame, own_columns=own_columns_frame )
[docs] @doc_inject(selector='relabel', class_name='Frame') def relabel(self, index: tp.Optional[TRelabelInput] = None, columns: tp.Optional[TRelabelInput] = None, *, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, ) -> tp.Self: ''' {doc} Args: index: {relabel_input_index} columns: {relabel_input_columns} ''' own_index = False if index is IndexAutoFactory: index = None elif is_callable_or_mapping(index): index = self._index.relabel(index) # type: ignore # can only own if index_constructor is None own_index = index_constructor is None elif index is None: index = self._index own_index = index_constructor is None elif isinstance(index, Set): raise RelabelInvalid() own_columns = False if columns is IndexAutoFactory: columns = None elif is_callable_or_mapping(columns): columns = self._columns.relabel(columns) # type: ignore # can only own if columns_constructor is None own_columns = columns_constructor is None elif columns is None: columns = self._columns own_columns = columns_constructor is None and self.STATIC elif isinstance(columns, Set): raise RelabelInvalid() return self.__class__( self._blocks.copy(), # does not copy arrays index=index, # type: ignore columns=columns, # type: ignore name=self._name, index_constructor=index_constructor, columns_constructor=columns_constructor, own_data=True, own_index=own_index, own_columns=own_columns, )
[docs] @doc_inject(selector='relabel_flat', class_name='Frame') def relabel_flat(self, index: bool = False, columns: bool = False ) -> tp.Self: ''' {doc} Args: index: Boolean to flag flatening on the index. columns: Boolean to flag flatening on the columns. ''' if not index and not columns: raise RuntimeError('must specify one or both of columns, index') index_owned = self._index.flat() if index else self._index.copy() # type: ignore columns_owned = self._columns.flat() if columns else self._columns.copy() # type: ignore return self.__class__( self._blocks.copy(), # does not copy arrays index=index_owned, columns=columns_owned, name=self._name, own_data=True, own_index=True, own_columns=True)
[docs] @doc_inject(selector='relabel_level_add', class_name='Frame') def relabel_level_add(self, index: TLabel = None, columns: TLabel = None, *, index_constructor: TIndexCtorSpecifier = None, columns_constructor: TIndexCtorSpecifier = None, ) -> tp.Self: ''' {doc} Args: index: {level} columns: {level} * index_constructor: columns_constructor: ''' index_final = (self._index.level_add( index, index_constructor=index_constructor) if index is not None else self._index ) columns_final = (self._columns.level_add( columns, index_constructor=columns_constructor) if columns is not None else self._columns ) return self.__class__( self._blocks.copy(), # does not copy arrays index=index_final, columns=columns_final, name=self._name, own_data=True, own_index=True, own_columns=self.STATIC)
[docs] @doc_inject(selector='relabel_level_drop', class_name='Frame') def relabel_level_drop(self, index: int = 0, columns: int = 0 ) -> tp.Self: ''' {doc} Args: index: {count} Default is zero. columns: {count} Default is zero. ''' index_owned = self._index.level_drop(index) if index else self._index.copy() # type: ignore columns_owned = self._columns.level_drop(columns) if columns else self._columns.copy() # type: ignore return self.__class__( self._blocks.copy(), # does not copy arrays index=index_owned, columns=columns_owned, name=self._name, own_data=True, own_index=True, own_columns=True)
[docs] def relabel_shift_in(self, key: TLocSelector, *, axis: int = 0, index_constructors: TIndexCtorSpecifiers = None, ) -> tp.Self: ''' Create, or augment, an :obj:`IndexHierarchy` by providing one or more selections from the Frame (via axis-appropriate ``loc`` selections) to move into the :obj:`Index`. Args: key: a loc-style selection on the opposite axis. axis: 0 modifies the index by selecting columns with ``key``; 1 modifies the columns by selecting rows with ``key``. ''' if axis == 0: # select from columns, add to index index_target = self._index index_opposite = self._columns target_default_ctr = Index else: index_target = self._columns index_opposite = self._index target_default_ctr = self._COLUMNS_CONSTRUCTOR name_prior: tp.Tuple[TName, ...] ih_index_constructors: tp.List[TIndexCtorSpecifier] if index_target.depth == 1: ih_blocks = TypeBlocks.from_blocks((index_target.values,)) name_prior = index_target.names if index_target.name is None else (index_target.name,) ih_index_constructors = [index_target.__class__] else: # No recache is needed as it's not possible for an index to be GO ih_blocks = index_target._blocks.copy() # type: ignore # will mutate copied blocks # only use string form of labels if we are not storing a correctly sized tuple name_prior = index_target.name if index_target._name_is_names() else index_target.names # type: ignore ih_index_constructors = index_target.index_types.values.tolist() iloc_key = index_opposite._loc_to_iloc(key) # NOTE: must do this before dropping name_posterior: tp.Tuple[TLabel, ...] if isinstance(iloc_key, INT_TYPES): name_posterior = (index_opposite[iloc_key],) else: name_posterior = tuple(index_opposite[iloc_key]) ih_name = name_prior + name_posterior if index_constructors is None: ih_index_constructors.extend(target_default_ctr for _ in name_posterior) elif callable(index_constructors): # one constructor ih_index_constructors.extend(index_constructors for _ in name_posterior) # pyright: ignore else: # assume properly sized iterable ih_index_constructors.extend(index_constructors) if len(ih_index_constructors) != len(ih_name): raise RuntimeError('Incorrect number of values in index_constructors.') index_opposite = index_opposite._drop_iloc(iloc_key) if axis == 0: # select from columns, add to index ih_blocks.extend(self._blocks._extract(column_key=iloc_key)) frame_blocks = TypeBlocks.from_blocks( self._blocks._drop_blocks(column_key=iloc_key), shape_reference=(self.shape[0], len(index_opposite)), ) index = IndexHierarchy._from_type_blocks( ih_blocks, name=ih_name, index_constructors=ih_index_constructors, ) columns = index_opposite else: # select from index, add to columns ih_blocks.extend(self._blocks._extract(row_key=iloc_key).transpose()) frame_blocks = TypeBlocks.from_blocks( self._blocks._drop_blocks(row_key=iloc_key), shape_reference=(len(index_opposite), self.shape[1]), ) index = index_opposite # type: ignore columns = self._COLUMNS_HIERARCHY_CONSTRUCTOR._from_type_blocks( ih_blocks, name=ih_name, index_constructors=ih_index_constructors, ) return self.__class__( frame_blocks, # does not copy arrays index=index, columns=columns, name=self._name, own_data=True, own_index=True, own_columns=True)
[docs] def relabel_shift_out(self, depth_level: TDepthLevel, *, axis: int = 0, ) -> tp.Self: ''' Shift values from an index on an axis to the Frame by providing one or more depth level selections. Args: dpeth_level: an iloc-style selection on the :obj:`Index` of the specified axis. axis: 0 modifies the index by selecting columns with ``depth_level``; 1 modifies the columns by selecting rows with ``depth_level``. ''' if axis == 0: # select from index, remove from index index_target = self._index target_ctors = self._index.index_types # Series target_hctor = IndexHierarchy elif axis == 1: index_target = self._columns target_ctors = self._columns.index_types # Series target_hctor = self._COLUMNS_HIERARCHY_CONSTRUCTOR else: raise AxisInvalid(f'invalid axis {axis}') new_labels: tp.Iterable[TLabel] if index_target.depth == 1: index_target._depth_level_validate(depth_level) # type: ignore # will raise new_target = IndexAutoFactory add_blocks = (index_target.values,) new_labels = index_target.names if index_target.name is None else (index_target.name,) else: if index_target._recache: index_target._update_array_cache() label_src: tp.Tuple[TName] = (index_target.name if index_target._name_is_names() # type: ignore else index_target.names) if isinstance(depth_level, INT_TYPES): new_labels = (label_src[depth_level],) remain_labels = tuple(label for i, label in enumerate(label_src) if i != depth_level) else: new_labels = (label_src[i] for i in depth_level) remain_labels = tuple(label for i, label in enumerate(label_src) if i not in depth_level) target_tb = index_target._blocks # type: ignore add_blocks = target_tb._slice_blocks(None, depth_level, False, True) # this might fail if nothing left remain_blocks = TypeBlocks.from_blocks( target_tb._drop_blocks(column_key=depth_level), shape_reference=(len(index_target), 0)) remain_columns = remain_blocks.shape[1] if remain_columns == 0: new_target = IndexAutoFactory elif remain_columns == 1: target_ctor = target_ctors.drop.iloc[depth_level].iloc[0] new_target = target_ctor( column_1d_filter(remain_blocks._blocks[0]), name=remain_labels[0]) else: index_constructors = target_ctors.drop.iloc[depth_level].values new_target = target_hctor._from_type_blocks( # type: ignore remain_blocks, name=remain_labels, index_constructors=index_constructors, ) if axis == 0: # select from index, remove from index blocks = TypeBlocks.from_blocks(chain(add_blocks, self._blocks._blocks)) index = new_target # if we already have a hierarchical index here, there is no way to ensure that the new labels coming in are of appropriate depth; only option is to get a flat version of columns if self._columns.depth > 1: extend_labels = self._columns.flat().__iter__() # type: ignore else: extend_labels = self._columns.__iter__() columns = self._COLUMNS_CONSTRUCTOR.from_labels( chain(new_labels, extend_labels), # type: ignore name=self._columns.name, ) else: blocks = TypeBlocks.from_blocks(TypeBlocks.vstack_blocks_to_blocks( (TypeBlocks.from_blocks(add_blocks).transpose(), self._blocks)) ) if self._index.depth > 1: extend_labels = self._index.flat().__iter__() # type: ignore else: extend_labels = self._index.__iter__() index = Index.from_labels( chain(new_labels, extend_labels), # type: ignore name=self._index.name) columns = new_target # type: ignore return self.__class__( blocks, # does not copy arrays index=index, columns=columns, name=self._name, own_data=True, own_index=index is not IndexAutoFactory, own_columns=columns is not IndexAutoFactory, )
[docs] def rehierarch(self, index: tp.Optional[tp.Sequence[int]] = None, columns: tp.Optional[tp.Sequence[int]] = None, *, index_constructors: TIndexCtorSpecifiers = None, columns_constructors: TIndexCtorSpecifiers = None, ) -> tp.Self: ''' Produce a new `Frame` with index and/or columns constructed with a transformed hierarchy. Args: index: Depth level specifier columns: Depth level specifier ''' if index and self.index.depth == 1: raise RuntimeError('cannot rehierarch on index when there is no hierarchy') if columns and self.columns.depth == 1: raise RuntimeError('cannot rehierarch on columns when there is no hierarchy') if index: index_idx, index_iloc = rehierarch_from_index_hierarchy( labels=self._index, # type: ignore depth_map=index, index_constructors=index_constructors, name=self._index.name ) else: index_idx = self._index index_iloc = None if columns: columns_idx, columns_iloc = rehierarch_from_index_hierarchy( labels=self._columns, # type: ignore depth_map=columns, index_constructors=columns_constructors, name=self._columns.name ) own_columns = True else: columns_idx = self._columns own_columns = False # let constructor determine columns_iloc = None blocks = self._blocks._extract(index_iloc, columns_iloc) return self.__class__( blocks, index=index_idx, columns=columns_idx, name=self._name, own_data=True, own_index=True, own_columns=own_columns )
#--------------------------------------------------------------------------- # na handling
[docs] def isna(self) -> tp.Self: ''' Return a same-indexed, Boolean Frame indicating True which values are NaN or None. ''' return self.__class__(self._blocks.isna(), index=self._index, columns=self._columns, own_index=True, own_columns=self.STATIC, own_data=True, )
[docs] def notna(self) -> tp.Self: ''' Return a same-indexed, Boolean Frame indicating True which values are not NaN or None. ''' return self.__class__(self._blocks.notna(), index=self._index, columns=self._columns, own_index=True, own_columns=self.STATIC, own_data=True, )
[docs] def dropna(self, axis: int = 0, condition: tp.Callable[[TNDArrayAny], TNDArrayAny] = np.all) -> tp.Self: ''' Return a new :obj:`Frame` after removing rows (axis 0) or columns (axis 1) where any or all values are NA (NaN or None). The condition is determined by a NumPy ufunc that process the Boolean array returned by ``isna()``; the default is ``np.all``. Args: axis: condition: ''' # returns Boolean areas that define axis to keep row_key, column_key = self._blocks.drop_missing_to_keep_locations( axis=axis, condition=condition, func=isna_array, ) # NOTE: if no values to drop and this is a Frame (not a FrameGO) we can return self as it is immutable. only one of row_key, colum_Key will be an array if self.STATIC: if ((column_key is None and row_key.all()) or # type: ignore (row_key is None and column_key.all())): # type: ignore return self return self._extract(row_key, column_key)
#--------------------------------------------------------------------------- # falsy handling
[docs] def isfalsy(self) -> tp.Self: ''' Return a same-indexed, Boolean Frame indicating True which values are falsy. ''' # always return a Frame, even if this is a FrameGO return self.__class__(self._blocks.isfalsy(), index=self._index, columns=self._columns, own_index=True, own_columns=self.STATIC, own_data=True, )
[docs] def notfalsy(self) -> tp.Self: ''' Return a same-indexed, Boolean Frame indicating True which values are not falsy. ''' # always return a Frame, even if this is a FrameGO return self.__class__(self._blocks.notfalsy(), index=self._index, columns=self._columns, own_index=True, own_columns=self.STATIC, own_data=True, )
[docs] def dropfalsy(self, axis: int = 0, condition: tp.Callable[[TNDArrayAny], TNDArrayAny] = np.all) -> tp.Self: ''' Return a new Frame after removing rows (axis 0) or columns (axis 1) where any or all values are falsy. The condition is determined by a NumPy ufunc that process the Boolean array returned by ``isfalsy()``; the default is ``np.all``. Args: axis: condition: ''' # returns Boolean areas that define axis to keep row_key, column_key = self._blocks.drop_missing_to_keep_locations( axis=axis, condition=condition, func=isfalsy_array, ) # NOTE: if no values to drop and this is a Frame (not a FrameGO) we can return self as it is immutable. only one of row_key, colum_Key will be an array if self.__class__ is Frame: if ((column_key is None and row_key.all()) or # type: ignore (row_key is None and column_key.all())): # type: ignore return self return self._extract(row_key, column_key)
#--------------------------------------------------------------------------- def _fill_missing(self, value: tp.Any, func: tp.Callable[[TNDArrayAny], TNDArrayAny], ) -> tp.Self: ''' Args: func: function to return True for missing values ''' kwargs = dict( index=self._index, columns=self._columns, name=self._name, own_index=True, own_columns=self.STATIC, own_data=True, ) # NOTE: we branch based on value type to use more efficient TypeBlock methods when we know we have an element or a 2D array if isinstance(value, Frame): fill_value = dtype_to_fill_value(value._blocks._index.dtype) fill = value.reindex( index=self.index, columns=self.columns, fill_value=fill_value ).values # produce a Boolean array that shows True only for labels (index, columns) found in the original `value` argument (before reindexing) and also in the target; this will be used to not set a NA when the value to fill was produced by reindexing. fill_valid = self._blocks.extract_iloc_mask(( self.index.isin(value.index.values), self.columns.isin(value.columns.values) )).values return self.__class__( self._blocks.fill_missing_by_unit(fill, fill_valid, func=func), **kwargs, # type: ignore ) elif is_fill_value_factory_initializer(value): # we have a iterable or a mapping, or FillValueAuto get_col_fill_value = get_col_fill_value_factory(value, columns=self._columns) return self.__class__( self._blocks.fill_missing_by_callable( func_missing=func, get_col_fill_value=get_col_fill_value, ), **kwargs, # type: ignore ) # if not an iterable or if a string return self.__class__( self._blocks.fill_missing_by_unit(value, None, func=func), **kwargs, # type: ignore )
[docs] @doc_inject(selector='fillna') def fillna(self, value: tp.Any) -> tp.Self: '''Return a new ``Frame`` after replacing null (NaN or None) values with the supplied value. Args: {value} ''' return self._fill_missing(value, func=isna_array)
[docs] @doc_inject(selector='fillna') def fillfalsy(self, value: tp.Any) -> tp.Self: '''Return a new ``Frame`` after replacing falsy values with the supplied value. Args: {value} ''' return self._fill_missing(value, func=isfalsy_array)
#---------------------------------------------------------------------------
[docs] @doc_inject(selector='fillna') def fillna_leading(self, value: tp.Any, *, axis: int = 0) -> tp.Self: ''' Return a new ``Frame`` after filling leading (and only leading) null (NaN or None) with the provided ``value``. Args: {value} {axis} ''' return self.__class__(self._blocks.fillna_leading(value, axis=axis), index=self._index, columns=self._columns, name=self._name, own_data=True)
[docs] @doc_inject(selector='fillna') def fillna_trailing(self, value: tp.Any, *, axis: int = 0) -> tp.Self: ''' Return a new ``Frame`` after filling trailing (and only trailing) null (NaN or None) with the provided ``value``. Args: {value} {axis} ''' return self.__class__(self._blocks.fillna_trailing(value, axis=axis), index=self._index, columns=self._columns, name=self._name, own_data=True)
[docs] @doc_inject(selector='fillna') def fillfalsy_leading(self, value: tp.Any, *, axis: int = 0) -> tp.Self: ''' Return a new ``Frame`` after filling leading (and only leading) falsy values with the provided ``value``. Args: {value} {axis} ''' return self.__class__(self._blocks.fillfalsy_leading(value, axis=axis), index=self._index, columns=self._columns, name=self._name, own_data=True)
[docs] @doc_inject(selector='fillna') def fillfalsy_trailing(self, value: tp.Any, *, axis: int = 0) -> tp.Self: ''' Return a new ``Frame`` after filling trailing (and only trailing) falsy values with the provided ``value``. Args: {value} {axis} ''' return self.__class__(self._blocks.fillfalsy_trailing(value, axis=axis), index=self._index, columns=self._columns, name=self._name, own_data=True)
[docs] @doc_inject(selector='fillna') def fillna_forward(self, limit: int = 0, *, axis: int = 0) -> tp.Self: ''' Return a new ``Frame`` after filling forward null (NaN or None) with the last observed value. Args: {limit} {axis} ''' return self.__class__(self._blocks.fillna_forward(limit=limit, axis=axis), index=self._index, columns=self._columns, name=self._name, own_data=True)
[docs] @doc_inject(selector='fillna') def fillna_backward(self, limit: int = 0, *, axis: int = 0) -> tp.Self: ''' Return a new ``Frame`` after filling backward null (NaN or None) with the first observed value. Args: {limit} {axis} ''' return self.__class__(self._blocks.fillna_backward(limit=limit, axis=axis), index=self._index, columns=self._columns, name=self._name, own_data=True)
[docs] @doc_inject(selector='fillna') def fillfalsy_forward(self, limit: int = 0, *, axis: int = 0) -> tp.Self: ''' Return a new ``Frame`` after filling forward falsy values with the last observed value. Args: {limit} {axis} ''' return self.__class__(self._blocks.fillfalsy_forward(limit=limit, axis=axis), index=self._index, columns=self._columns, name=self._name, own_data=True)
[docs] @doc_inject(selector='fillna') def fillfalsy_backward(self, limit: int = 0, *, axis: int = 0) -> tp.Self: ''' Return a new ``Frame`` after filling backward falsy values with the first observed value. Args: {limit} {axis} ''' return self.__class__(self._blocks.fillfalsy_backward(limit=limit, axis=axis), index=self._index, columns=self._columns, name=self._name, own_data=True)
#---------------------------------------------------------------------------
[docs] def __len__(self) -> int: '''Length of rows in values. ''' return self._blocks._index.rows
[docs] @doc_inject() def display(self, config: tp.Optional[DisplayConfig] = None, *, style_config: tp.Optional[StyleConfig] = None, ) -> Display: '''{doc} Args: {config} ''' return Display.from_params( index=self._index, columns=self._columns, header=DisplayHeader(self.__class__, self._name), column_forward_iter=partial(self._blocks.axis_values, axis=0), column_reverse_iter=partial(self._blocks.axis_values, axis=0, reverse=True), column_default_iter=partial(self._blocks.axis_values, axis=0), config=config, style_config=style_config, )
#--------------------------------------------------------------------------- # accessors @property @doc_inject(selector='values_2d', class_name='Frame') def values(self) -> TNDArrayAny: ''' {} ''' return self._blocks.values @property def index(self) -> IndexBase: '''The ``IndexBase`` instance assigned for row labels. ''' return self._index @property def columns(self) -> IndexBase: '''The ``IndexBase`` instance assigned for column labels. ''' return self._columns #--------------------------------------------------------------------------- # common attributes from the numpy array @property def dtypes(self) -> TSeriesAny: ''' Return a Series of dytpes for each realizable column. Returns: :obj:`static_frame.Series` ''' return Series(self._blocks.dtypes, index=immutable_index_filter(self._columns), name=self._name ) @property @doc_inject() def mloc(self) -> TNDArrayAny: '''{doc_array} ''' return self._blocks.mloc #--------------------------------------------------------------------------- @property def shape(self) -> tp.Tuple[int, int]: ''' Return a tuple describing the shape of the underlying NumPy array. Returns: :obj:`tp.Tuple[int, int]` ''' return self._blocks._index.shape @property def ndim(self) -> int: ''' Return the number of dimensions, which for a `Frame` is always 2. Returns: :obj:`int` ''' return self._NDIM @property def size(self) -> int: ''' Return the size of the underlying NumPy array. Returns: :obj:`int` ''' return self._blocks.size @property def nbytes(self) -> int: ''' Return the total bytes of the underlying NumPy array. Returns: :obj:`int` ''' return self._blocks.nbytes #--------------------------------------------------------------------------- def _extract_array(self, row_key: TILocSelector = None, column_key: TILocSelector = None, ) -> TNDArrayAny: ''' Alternative extractor that returns just an ndarray. Keys are iloc keys. ''' return self._blocks._extract_array(row_key, column_key) @staticmethod def _extract_axis_not_multi( row_key: tp.Any, column_key: tp.Any, ) -> tp.Tuple[bool, bool]: ''' If either row or column is given with a non-multiple type of selection (a single scalar), reduce dimensionality. ''' row_nm = False column_nm = False # NOTE: can we just identify integer types? if row_key is not None and not isinstance(row_key, KEY_MULTIPLE_TYPES): row_nm = True # axis 0 if column_key is not None and not isinstance(column_key, KEY_MULTIPLE_TYPES): column_nm = True # axis 1 return row_nm, column_nm @tp.overload def _extract(self, row_key: TILocSelectorOne) -> TSeriesAny: ... @tp.overload def _extract(self, row_key: TILocSelectorMany) -> tp.Self: ... @tp.overload def _extract(self, column_key: TILocSelectorOne) -> TSeriesAny: ... @tp.overload def _extract(self, column_key: TILocSelectorMany) -> tp.Self: ... @tp.overload def _extract(self, row_key: TILocSelectorMany, column_key: TILocSelectorOne) -> TSeriesAny: ... @tp.overload def _extract(self, row_key: TILocSelectorOne, column_key: TILocSelectorMany) -> TSeriesAny: ... @tp.overload def _extract(self, row_key: TILocSelectorMany, column_key: TILocSelectorMany) -> tp.Self: ... @tp.overload def _extract(self, row_key: TILocSelectorOne, column_key: TILocSelectorOne) -> tp.Any: ... @tp.overload def _extract(self, row_key: TILocSelector) -> tp.Any: ... def _extract(self, # pyright: ignore row_key: TILocSelector = None, column_key: TILocSelector = None, ) -> tp.Any: ''' Extract Container based on iloc selection (indices have already mapped) ''' blocks = self._blocks._extract(row_key=row_key, column_key=column_key) if blocks.__class__ is not TypeBlocks: return blocks index: IndexBase own_index = True # the extracted Frame can always own this index row_key_is_slice = row_key.__class__ is slice if row_key is None or (row_key_is_slice and row_key == NULL_SLICE): index = self._index elif not row_key_is_slice and isinstance(row_key, INT_TYPES): name_row = self._index._extract_iloc_by_int(row_key) else: index = self._index._extract_iloc(row_key) # type: ignore columns: IndexBase # can only own columns if _COLUMNS_CONSTRUCTOR is static column_key_is_slice = column_key.__class__ is slice if column_key is None or (column_key_is_slice and column_key == NULL_SLICE): columns = self._columns own_columns = self._COLUMNS_CONSTRUCTOR.STATIC elif not column_key_is_slice and isinstance(column_key, INT_TYPES): name_column = self._columns._extract_iloc_by_int(column_key) else: columns = self._columns._extract_iloc(column_key) # type: ignore own_columns = True # determine if an axis is not multi; if one axis is not multi, we return a Series instead of a Frame axis_nm = self._extract_axis_not_multi(row_key, column_key) blocks_shape = blocks.shape if blocks_shape[0] == 0 or blocks_shape[1] == 0: # return a 0-sized Series, `blocks` is already extracted array = column_1d_filter(blocks._blocks[0]) if blocks._blocks else EMPTY_ARRAY if axis_nm[0]: # if row not multi return Series(array, index=immutable_index_filter(columns), name=name_row) elif axis_nm[1]: return Series(array, index=index, name=name_column) elif blocks_shape == (1, 1): # if TypeBlocks did not return an element, need to determine which axis to use for Series index if axis_nm[0]: # if row not multi return Series(blocks.values[0], index=immutable_index_filter(columns), name=name_row) elif axis_nm[1]: return Series(blocks.values[0], index=index, name=name_column) # if both are multi, we return a Frame elif blocks_shape[0] == 1: # if one row if axis_nm[0]: # if row key not multi # best to use blocks.values, as will need to consolidate dtypes; will always return a 2D array return Series(blocks.values[0], index=immutable_index_filter(columns), name=name_row) elif blocks_shape[1] == 1: # if one column if axis_nm[1]: # if column key is not multi return Series( column_1d_filter(blocks._blocks[0]), index=index, name=name_column) return self.__class__(blocks, index=index, columns=columns, name=self._name, own_data=True, # always get new TypeBlock instance above own_index=own_index, own_columns=own_columns ) @tp.overload def _extract_iloc(self, key: TILocSelectorOne) -> TSeriesAny: ... @tp.overload def _extract_iloc(self, key: TILocSelectorMany) -> tp.Self: ... @tp.overload def _extract_iloc(self, key: tp.Tuple[TILocSelectorOne, TILocSelectorMany]) -> TSeriesAny: ... @tp.overload def _extract_iloc(self, key: tp.Tuple[TILocSelectorMany, TILocSelectorOne]) -> TSeriesAny: ... @tp.overload def _extract_iloc(self, key: tp.Tuple[TILocSelectorMany, TILocSelectorMany]) -> tp.Self: ... @tp.overload def _extract_iloc(self, key: tp.Tuple[TILocSelectorOne, TILocSelectorOne]) -> tp.Any: ... @tp.overload def _extract_iloc(self, key: TILocSelectorCompound) -> tp.Any: ... def _extract_iloc(self, key: TILocSelectorCompound) -> tp.Any: # pyright: ignore ''' Give a compound key, return a new Frame. This method simply handles the variability of single or compound selectors. ''' if isinstance(key, tuple): r, c = key return self._extract(r, c) return self._extract(key) def _compound_loc_to_iloc(self, key: TLocSelectorCompound, # ) -> TILocSelectorCompound: ) -> tp.Tuple[TILocSelector, TILocSelector]: ''' Given a compound iloc key, return a tuple of row, column keys. Assumes the first argument is always a row extractor. ''' if isinstance(key, tuple): loc_row_key, loc_column_key = key # pyright: ignore iloc_column_key = self._columns._loc_to_iloc(loc_column_key) else: loc_row_key = key iloc_column_key = None iloc_row_key = self._index._loc_to_iloc(loc_row_key) return iloc_row_key, iloc_column_key def _extract_loc(self, key: TLocSelectorCompound) -> tp.Any: r, c = self._compound_loc_to_iloc(key) return self._extract(r, c) def _extract_loc_columns(self, key: TLocSelector) -> TFrameOrSeries: '''Alternate extract of a columns only selection. ''' return self._extract(None, self._columns._loc_to_iloc(key), ) def _extract_bloc(self, key: TBlocKey) -> TSeriesAny: ''' 2D Boolean selector, selected by either a Boolean 2D Frame or array. ''' bloc_key = bloc_key_normalize(key=key, container=self) coords, values = self._blocks.extract_bloc(bloc_key) index: Index[np.object_] = Index( ((self._index[x], self._columns[y]) for x, y in coords), dtype=DTYPE_OBJECT) return Series(values, index=index, own_index=True) def _compound_loc_to_getitem_iloc(self, key: TLocSelectorCompound) -> tp.Tuple[None, TILocSelector]: '''Handle a potentially compound key in the style of __getitem__. This will raise an appropriate exception if a two argument loc-style call is attempted. ''' iloc_column_key = self._columns._loc_to_iloc(key) return None, iloc_column_key @tp.overload def __getitem__(self, key: TLabel) -> TSeriesAny: ... @tp.overload def __getitem__(self, key: tp.List[int]) -> tp.Self: ... @tp.overload def __getitem__(self, key: tp.List[str]) -> tp.Self: ... @tp.overload def __getitem__(self, key: TLocSelectorMany) -> tp.Self: ... @tp.overload def __getitem__(self, key: TLocSelector) -> tp.Self | TSeriesAny: ...
[docs] @doc_inject(selector='selector') def __getitem__(self, key: TLocSelector) -> tp.Self | TSeriesAny: # pyright: ignore '''Selector of columns by label. Args: key: {key_loc} ''' r, c = self._compound_loc_to_getitem_iloc(key) return self._extract(r, c)
#--------------------------------------------------------------------------- def _drop_iloc(self, key: TILocSelectorCompound) -> tp.Self: ''' Args: key: If a Boolean Series was passed, it has been converted to Boolean NumPy array already in loc to iloc. ''' blocks = self._blocks.drop(key) if isinstance(key, tuple): iloc_row_key, iloc_column_key = key index = self._index._drop_iloc(iloc_row_key) own_index = True columns = self._columns._drop_iloc(iloc_column_key) own_columns = True else: iloc_row_key = key # no column selection index = self._index._drop_iloc(iloc_row_key) own_index = True columns = self._columns own_columns = False return self.__class__(blocks, columns=columns, index=index, name=self._name, own_data=True, own_columns=own_columns, own_index=own_index ) def _drop_loc(self, key: TLocSelectorCompound) -> tp.Self: key_iloc = self._compound_loc_to_iloc(key) return self._drop_iloc(key=key_iloc) def _drop_getitem(self, key: TLocSelectorCompound) -> tp.Self: key_iloc = self._compound_loc_to_getitem_iloc(key) return self._drop_iloc(key=key_iloc) #--------------------------------------------------------------------------- def _extract_iloc_mask(self, key: TILocSelectorCompound) -> TFrameAny: masked_blocks = self._blocks.extract_iloc_mask(key) return self.__class__(masked_blocks, columns=self._columns, index=self._index, own_data=True) def _extract_loc_mask(self, key: TLocSelectorCompound) -> TFrameAny: key_iloc = self._compound_loc_to_iloc(key) return self._extract_iloc_mask(key=key_iloc) def _extract_getitem_mask(self, key: TLocSelectorCompound) -> TFrameAny: key_iloc = self._compound_loc_to_getitem_iloc(key) return self._extract_iloc_mask(key=key_iloc) #--------------------------------------------------------------------------- def _extract_iloc_masked_array(self, key: TILocSelectorCompound, ) -> MaskedArray[tp.Any, tp.Any]: masked_blocks = self._blocks.extract_iloc_mask(key) return MaskedArray(data=self.values, mask=masked_blocks.values) # type: ignore def _extract_loc_masked_array(self, key: TLocSelectorCompound) -> MaskedArray[tp.Any, tp.Any]: key_iloc = self._compound_loc_to_iloc(key) return self._extract_iloc_masked_array(key=key_iloc) def _extract_getitem_masked_array(self, key: TLocSelectorCompound) -> MaskedArray[tp.Any, tp.Any]: key_iloc = self._compound_loc_to_getitem_iloc(key) return self._extract_iloc_masked_array(key=key_iloc) #--------------------------------------------------------------------------- def _extract_iloc_assign(self, key: TILocSelectorCompound) -> 'FrameAssignILoc': return FrameAssignILoc(self, key=key) def _extract_loc_assign(self, key: TLocSelectorCompound) -> 'FrameAssignILoc': # extract if tuple, then pack back again key_iloc = self._compound_loc_to_iloc(key) return self._extract_iloc_assign(key=key_iloc) def _extract_getitem_assign(self, key: TLocSelectorCompound) -> 'FrameAssignILoc': # extract if tuple, then pack back again key_iloc = self._compound_loc_to_getitem_iloc(key) return self._extract_iloc_assign(key=key_iloc) def _extract_bloc_assign(self, key: TBlocKey) -> 'FrameAssignBLoc': '''Assignment based on a Boolean Frame or array.''' return FrameAssignBLoc(self, key=key) #--------------------------------------------------------------------------- def _extract_getitem_astype(self, key: TLocSelector) -> 'FrameAsType': # extract if tuple, then pack back again _, key_iloc = self._compound_loc_to_getitem_iloc(key) return FrameAsType(self, column_key=key_iloc) def _extract_getitem_consolidate(self, key: TLocSelector) -> TFrameAny: _, key_iloc = self._compound_loc_to_getitem_iloc(key) blocks = TypeBlocks.from_blocks( self._blocks._consolidate_select_blocks(key_iloc)) return self.__class__(blocks, index=self._index, columns=self._columns, own_index=True, own_data=True, ) #--------------------------------------------------------------------------- # dictionary-like interface
[docs] def keys(self) -> tp.Iterable[TLabel]: '''Iterator of column labels. ''' return self._columns
[docs] def __iter__(self) -> tp.Iterable[TLabel]: ''' Iterator of column labels, same as :py:meth:`Frame.keys`. ''' return self._columns.__iter__()
[docs] def __contains__(self, value: TLabel) -> bool: ''' Inclusion of value in column labels. ''' return self._columns.__contains__(value)
[docs] def items(self) -> tp.Iterator[tp.Tuple[TLabel, TSeriesAny]]: '''Iterator of pairs of column label and corresponding column :obj:`Series`. ''' for label, array in zip(self._columns.values, self._blocks.iter_columns_arrays()): # array is assumed to be immutable yield label, Series(array, index=self._index, name=label)
[docs] def get(self, key: TLabel, default: tp.Optional[TSeriesAny] = None, ) -> TSeriesAny: ''' Return the value found at the columns key, else the default if the key is not found. This method is implemented to complete the dictionary-like interface. ''' if key not in self._columns: return default # type: ignore return self.__getitem__(key)
#--------------------------------------------------------------------------- # operator functions def _ufunc_unary_operator(self, operator: tp.Callable[[TNDArrayAny], TNDArrayAny], ) -> TFrameAny: # call the unary operator on _blocks return self.__class__( self._blocks._ufunc_unary_operator(operator=operator), index=self._index, columns=self._columns, name=self._name, ) def _ufunc_binary_operator(self, *, operator: TUFunc, other: tp.Any, axis: int = 0, fill_value: tp.Any = np.nan, ) -> TFrameAny: if operator.__name__ == 'matmul': return matmul(self, other) # type: ignore elif operator.__name__ == 'rmatmul': return matmul(other, self) # type: ignore if isinstance(other, Frame): name = None # reindex both dimensions to union indices # NOTE: union and reindexing check equals first columns = self._columns.union(other._columns) index = self._index.union(other._index) # NOTE: always own column, index, as we will just extract Typeblocks self_tb = self.reindex( columns=columns, index=index, own_index=True, own_columns=True, fill_value=fill_value, )._blocks # NOTE: we create columns from self._columns, and thus other can only own it if STATIC matches own_columns = other.STATIC == self.STATIC other_tb = other.reindex( columns=columns, index=index, own_index=True, own_columns=own_columns, fill_value=fill_value, )._blocks return self.__class__(self_tb._ufunc_binary_operator( operator=operator, other=other_tb), index=index, columns=columns, own_data=True, own_index=True, ) elif isinstance(other, Series): name = None if axis == 0: # when operating on a Series, we treat axis 0 as a row-wise operation, and thus take the union of the Series.index and Frame.columns columns = self._columns.union(other._index) # if self is a FrameGO, columns will be a GO, and we can own columns self_tb = self.reindex( columns=columns, own_columns=True, fill_value=fill_value, )._blocks # we can only own this index if other is immutable other_array = other.reindex( columns, own_index=self.STATIC, fill_value=fill_value, ).values blocks = self_tb._ufunc_binary_operator( operator=operator, other=other_array, axis=axis, ) return self.__class__(blocks, index=self._index, columns=columns, own_data=True, own_index=True, own_columns=self.STATIC, ) elif axis == 1: # column-wise operation, take union of Series.index and Frame.index index = self._index.union(other._index) self_tb = self.reindex( index=index, own_index=True, fill_value=fill_value, )._blocks other_array = other.reindex( index, own_index=True, fill_value=fill_value, ).values blocks = self_tb._ufunc_binary_operator( operator=operator, other=other_array, axis=axis, ) return self.__class__(blocks, index=index, columns=self._columns, own_data=True, own_index=True, ) else: # NOTE: axis always internally supplied raise AxisInvalid(f'invalid axis: {axis}') #pragma: no cover elif other.__class__ is np.ndarray: name = None elif other.__class__ is InterfaceFillValue: raise RuntimeError('via_fill_value interfaces can only be used on the left-hand side of binary expressions.') else: other = iterable_to_array_nd(other) if other.ndim == 0:# only for elements should we keep name name = self._name else: name = None # assume we will keep dimensionality blocks = self._blocks._ufunc_binary_operator( operator=operator, other=other, axis=axis, ) return self.__class__(blocks, index=self._index, columns=self._columns, own_data=True, own_index=True, name=name, ) #--------------------------------------------------------------------------- # axis functions def _ufunc_axis_skipna(self, *, axis: int, skipna: bool, ufunc: TUFunc, ufunc_skipna: TUFunc, composable: bool, dtypes: tp.Tuple[TDtypeAny, ...], size_one_unity: bool ) -> TSeriesAny: # axis 0 processes ros, deliveres column index # axis 1 processes cols, delivers row index post = self._blocks.ufunc_axis_skipna( skipna=skipna, axis=axis, ufunc=ufunc, ufunc_skipna=ufunc_skipna, composable=composable, dtypes=dtypes, size_one_unity=size_one_unity ) # post has been made immutable so Series will own if axis == 0: return Series( post, index=immutable_index_filter(self._columns) ) return Series(post, index=self._index) def _ufunc_shape_skipna(self, *, axis: int, skipna: bool, ufunc: TUFunc, ufunc_skipna: TUFunc, composable: bool, dtypes: tp.Tuple[TDtypeAny, ...], size_one_unity: bool ) -> TFrameAny: # axis 0 processes ros, deliveres column index # axis 1 processes cols, delivers row index dtype = None if not dtypes else dtypes[0] # only a tuple if skipna: post = ufunc_skipna(self.values, axis=axis, dtype=dtype) else: post = ufunc(self.values, axis=axis, dtype=dtype) post.flags.writeable = False return self.__class__( TypeBlocks.from_blocks(post), index=self._index, columns=self._columns, own_data=True, own_index=True ) #--------------------------------------------------------------------------- # axis iterators # NOTE: if there is more than one argument, the axis argument needs to be key-word only def _axis_array(self, axis: int) -> tp.Iterator[TNDArrayAny]: '''Generator of arrays across an axis ''' yield from self._blocks.axis_values(axis) def _axis_array_items(self, axis: int, ) -> tp.Iterator[tp.Tuple[TLabel, TNDArrayAny]]: keys = self._index if axis == 1 else self._columns yield from zip(keys, self._blocks.axis_values(axis)) def _axis_tuple(self, *, axis: int, constructor: tp.Optional[TTupleCtor] = None, ) -> tp.Iterator[tp.Sequence[tp.Any]]: '''Generator of named tuples across an axis. Args: axis: 0 iterates over columns (index axis), 1 iterates over rows (column axis) ''' if constructor is None: if axis == 1: labels = self._columns.values elif axis == 0: labels = self._index.values else: raise AxisInvalid(f'no support for axis {axis}') # uses _make method to call with iterable ctor = get_tuple_constructor(labels) elif isinstance(constructor, type): if (issubclass(constructor, tuple) and hasattr(constructor, '_make')): # discover named tuples, use _make method for single-value calling ctor = constructor._make # pyright: ignore elif is_dataclass(constructor): # this will fail if kw_only is true in python 3.10 ctor = lambda args: constructor(*args) # type: ignore else: # assume it can take a single arguments ctor = constructor else: ctor = constructor # NOTE: if all types are the same, it will be faster to use axis_values if axis == 1 and not self._blocks.unified_dtypes: yield from self._blocks.iter_row_tuples(key=None, constructor=ctor) # pyright: ignore else: # for columns, slicing arrays from blocks should be cheap for axis_values in self._blocks.axis_values(axis): yield ctor(axis_values) # pyright: ignore def _axis_tuple_items(self, *, axis: int, constructor: tp.Optional[TTupleCtor] = None, ) -> tp.Iterator[tp.Tuple[TLabel, tp.Sequence[tp.Any]]]: keys = self._index if axis == 1 else self._columns yield from zip(keys, self._axis_tuple(axis=axis, constructor=constructor)) def _axis_series(self, axis: int) -> tp.Iterator[TSeriesAny]: '''Generator of Series across an axis ''' # reference the indices and let the constructor reuse what is reusable if axis == 1: index = (self._columns if self._columns.STATIC else self._columns._IMMUTABLE_CONSTRUCTOR(self._columns)) labels = self._index elif axis == 0: index = self._index labels = self._columns for label, axis_values in zip(labels, self._blocks.axis_values(axis)): # NOTE: axis_values here are already immutable yield Series(axis_values, index=index, name=label, own_index=True) def _axis_series_items(self, axis: int) -> tp.Iterator[tp.Tuple[TLabel, TSeriesAny]]: keys = self._index if axis == 1 else self._columns yield from zip(keys, self._axis_series(axis=axis)) #--------------------------------------------------------------------------- # grouping methods def _axis_group_final_iter(self, *, axis: int, as_array: bool, group_iter: tp.Iterator[tp.Tuple[TLabel, slice | TNDArrayAny, TypeBlocks | TNDArrayAny]], index: IndexBase, columns: IndexBase, ordering: tp.Optional[TNDArrayAny], ) -> tp.Iterator[tp.Tuple[TLabel, TFrameAny | TNDArrayAny]]: '''Utility for final iteration of the group_iter, shared by three methods. ''' if as_array: yield from ((group, array) for group, _, array in group_iter) # pyright: ignore else: for group, selection, tb in group_iter: # NOTE: selection can be a Boolean array or a slice if axis == 0: # axis 0 is a row iter, so need to slice index, keep columns index_group = (index._extract_iloc(selection) if ordering is None else index._extract_iloc(ordering[selection]) ) yield group, self.__class__(tb, index=index_group, columns=columns, own_columns=self.STATIC, # own if static own_index=True, own_data=True) else: # axis 1 is a column iterators, so need to slice columns, keep index columns_group = (columns._extract_iloc(selection) if ordering is None else columns._extract_iloc(ordering[selection]) ) yield group, self.__class__(tb, index=index, columns=columns_group, own_index=True, own_columns=True, own_data=True) def _axis_group_iloc_items(self, key: TILocSelector, *, axis: int, drop: bool = False, stable: bool = True, as_array: bool = False, ) -> tp.Iterator[tp.Tuple[TLabel, TFrameAny | TNDArrayAny]]: ''' Core group implementation. Args: as_array: if True, return arrays instead of ``Frame`` ''' blocks = self._blocks if drop: shape = blocks._index.columns if axis == 0 else blocks._index.rows drop_mask = np.full(shape, True, dtype=DTYPE_BOOL) drop_mask[key] = False # NOTE: in limited studies using stable does not show significant overhead kind: TSortKinds = DEFAULT_STABLE_SORT_KIND if stable else DEFAULT_FAST_SORT_KIND try: blocks, ordering = blocks.sort(key=key, axis=not axis, kind=kind) use_sorted = True except TypeError: use_sorted = False ordering = None columns: IndexBase index: IndexBase group_iter: tp.Iterator[tp.Tuple[TLabel, slice | TNDArrayAny, tp.Union[TypeBlocks, TNDArrayAny]]] if use_sorted: group_iter = group_sorted( blocks=blocks, axis=axis, key=key, drop=drop, as_array=as_array, ) else: group_iter = group_match( blocks=blocks, axis=axis, key=key, drop=drop, as_array=as_array, ) if axis == 0: index = self._index columns = self._columns if not drop else self._columns[drop_mask] else: index = self._index if not drop else self._index[drop_mask] columns = self._columns yield from self._axis_group_final_iter( axis=axis, as_array=as_array, group_iter=group_iter, index=index, columns=columns, ordering=ordering, ) def _axis_group_loc_items(self, key: TLocSelector, *, axis: int = 0, drop: bool = False, stable: bool = True, as_array: bool = False, ) -> tp.Iterator[tp.Tuple[TLabel, TFrameAny | TNDArrayAny]]: ''' Args: key: We accept any thing that can do loc to iloc. Note that a tuple is permitted as key, where it would be interpreted as a single label for an IndexHierarchy. axis: drop: exclude the target of the group in the returned results. ''' if axis == 0: # row iterator, selecting columns for group by iloc_key = self._columns._loc_to_iloc(key) elif axis == 1: # column iterator, selecting rows for group by iloc_key = self._index._loc_to_iloc(key) else: raise AxisInvalid(f'invalid axis: {axis}') yield from self._axis_group_iloc_items(key=iloc_key, axis=axis, drop=drop, stable=stable, as_array=as_array, ) def _axis_group_loc(self, key: TLocSelector, *, axis: int = 0, drop: bool = False, as_array: bool = False, ) -> tp.Iterator[TFrameAny | TNDArrayAny]: yield from (x for _, x in self._axis_group_loc_items( key=key, axis=axis, drop=drop, as_array=as_array, )) #----------------------------------------------------------------------- def _axis_group_labels_items(self, depth_level: TDepthLevel = 0, *, axis: int = 0, as_array: bool = False, ) -> tp.Iterator[tp.Tuple[TLabel, TFrameAny | TNDArrayAny]]: # NOTE: simlar to _axis_group_iloc_items blocks = self._blocks index = self._index columns = self._columns if axis == 0: # maintain columns, group by index ref_index = index elif axis == 1: # maintain index, group by columns ref_index = columns else: raise AxisInvalid(f'invalid axis: {axis}') if isinstance(depth_level, INT_TYPES): labels = [ref_index.values_at_depth(depth_level)] else: labels = [ref_index.values_at_depth(i) for i in depth_level] ordering = None try: if len(labels) > 1: ordering = np.lexsort(list(reversed(labels))) else: ordering = np.argsort(labels[0], kind=DEFAULT_STABLE_SORT_KIND) use_sorted = True except TypeError: use_sorted = False if len(labels) > 1: # NOTE: this will do an h-strack style concatenation; this is ultimately what is needed in group_source group_source = blocks_to_array_2d(labels) if use_sorted: group_source = group_source[ordering] else: # group_source = column_2d_filter(labels[0]) group_source = labels[0] if use_sorted: group_source = group_source[ordering] group_iter: tp.Iterator[tp.Tuple[TLabel, slice | TNDArrayAny, TypeBlocks | TNDArrayAny]] if use_sorted: if axis == 0: blocks = self._blocks._extract(row_key=ordering) else: blocks = self._blocks._extract(column_key=ordering) group_iter = group_sorted( blocks=blocks, axis=axis, key=None, # assume this is not used drop=False, as_array=as_array, group_source=group_source, ) else: group_iter = group_match( blocks=blocks, axis=axis, key=None, drop=False, as_array=as_array, group_source=group_source, ) yield from self._axis_group_final_iter( axis=axis, as_array=as_array, group_iter=group_iter, index=index, columns=columns, ordering=ordering, ) def _axis_group_labels(self, depth_level: TDepthLevel = 0, *, axis: int = 0, as_array: bool = False, ) -> tp.Iterator[TFrameAny | TNDArrayAny]: yield from (x for _, x in self._axis_group_labels_items( depth_level=depth_level, axis=axis, as_array=as_array, )) #----------------------------------------------------------------------- def _axis_group_other_items(self, *, axis: int = 0, as_array: bool = False, group_source: TNDArrayAny, ) -> tp.Iterator[tp.Tuple[TLabel, TFrameAny | TNDArrayAny]]: blocks = self._blocks index = self._index columns = self._columns group_source_ndim = group_source.ndim ordering = None if group_source_ndim > 1: # normalize group_source for lex sorting group_source_cols = [group_source[NULL_SLICE, i] for i in range(group_source.shape[1])] try: if group_source_ndim > 1: ordering = np.lexsort(list(reversed(group_source_cols))) else: ordering = np.argsort(group_source, kind=DEFAULT_STABLE_SORT_KIND) use_sorted = True except TypeError: use_sorted = False if use_sorted: group_source = group_source[ordering] group_iter: tp.Iterator[tp.Tuple[TLabel, slice | TNDArrayAny, TypeBlocks | TNDArrayAny]] if use_sorted: if axis == 0: blocks = self._blocks._extract(row_key=ordering) else: blocks = self._blocks._extract(column_key=ordering) group_iter = group_sorted( blocks=blocks, axis=axis, key=None, # assume this is not used drop=False, as_array=as_array, group_source=group_source, ) else: group_iter = group_match( blocks=blocks, axis=axis, key=None, drop=False, as_array=as_array, group_source=group_source, ) yield from self._axis_group_final_iter( axis=axis, as_array=as_array, group_iter=group_iter, index=index, columns=columns, ordering=ordering, ) def _axis_group_other(self, *, axis: int = 0, as_array: bool = False, group_source: TNDArrayAny, ) -> tp.Iterator[TFrameAny | TNDArrayAny]: yield from (x for _, x in self._axis_group_other_items( axis=axis, as_array=as_array, group_source=group_source, )) #--------------------------------------------------------------------------- def _axis_window_items(self, *, size: int, axis: int = 0, step: int = 1, window_sized: bool = True, window_func: tp.Optional[TCallableAny] = None, window_valid: tp.Optional[TCallableAny] = None, label_shift: int = 0, label_missing_skips: bool = True, label_missing_raises: bool = False, start_shift: int = 0, size_increment: int = 0, as_array: bool = False, ) -> tp.Iterator[tp.Tuple[TLabel, tp.Any]]: '''Generator of index, processed-window pairs. ''' yield from axis_window_items( source=self, size=size, axis=axis, step=step, window_sized=window_sized, window_func=window_func, window_valid=window_valid, label_shift=label_shift, label_missing_skips=label_missing_skips, label_missing_raises=label_missing_raises, start_shift=start_shift, size_increment=size_increment, as_array=as_array, derive_label=True, ) def _axis_window(self, *, size: int, axis: int = 0, step: int = 1, window_sized: bool = True, window_func: tp.Optional[TCallableAny] = None, window_valid: tp.Optional[TCallableAny] = None, label_shift: int = 0, label_missing_skips: bool = True, label_missing_raises: bool = False, start_shift: int = 0, size_increment: int = 0, as_array: bool = False, ) -> tp.Iterator[TFrameAny]: yield from (x for _, x in axis_window_items( source=self, size=size, axis=axis, step=step, window_sized=window_sized, window_func=window_func, window_valid=window_valid, label_shift=label_shift, label_missing_skips=label_missing_skips, label_missing_raises=label_missing_raises, start_shift=start_shift, size_increment=size_increment, as_array=as_array, derive_label=False, )) #--------------------------------------------------------------------------- def _iter_element_iloc_items(self, axis: int = 0, ) -> tp.Iterator[tp.Tuple[tp.Tuple[int, ...], tp.Any]]: yield from self._blocks.element_items(axis=axis) # def _iter_element_iloc(self): # yield from (x for _, x in self._iter_element_iloc_items()) def _iter_element_loc_items(self, axis: int = 0, ) -> tp.Iterator[tp.Tuple[tp.Tuple[TLabel, TLabel], tp.Any]]: ''' Generator of pairs of (index, column), value. This is driven by ``np.ndindex``, and thus orders by row. ''' yield from ( ((self._index[k[0]], self._columns[k[1]]), v) for k, v in self._blocks.element_items(axis=axis) ) def _iter_element_loc(self, axis: int = 0, ) -> tp.Iterator[tp.Any]: yield from (x for _, x in self._iter_element_loc_items(axis=axis)) #--------------------------------------------------------------------------- # transformations resulting in the same dimensionality
[docs] def __reversed__(self) -> tp.Iterator[TLabel]: ''' Returns a reverse iterator on the frame's columns. ''' return reversed(self._columns)
[docs] @doc_inject(selector='sort') def sort_index(self, *, ascending: TBoolOrBools = True, kind: TSortKinds = DEFAULT_SORT_KIND, key: tp.Optional[tp.Callable[[IndexBase], tp.Union[TNDArrayAny, IndexBase]]] = None, ) -> TFrameAny: ''' Return a new :obj:`Frame` ordered by the sorted Index. Args: {ascendings} {kind} {key} ''' order = sort_index_for_order(self._index, kind=kind, ascending=ascending, key=key) index = self._index[order] blocks = self._blocks.iloc[order] return self.__class__(blocks, index=index, columns=self._columns, name=self._name, own_data=True, own_index=True, )
[docs] @doc_inject(selector='sort') def sort_columns(self, *, ascending: TBoolOrBools = True, kind: TSortKinds = DEFAULT_SORT_KIND, key: tp.Optional[tp.Callable[[IndexBase], tp.Union[TNDArrayAny, IndexBase]]] = None, ) -> TFrameAny: ''' Return a new :obj:`Frame` ordered by the sorted ``columns``. Args: {ascendings} {kind} {key} ''' order = sort_index_for_order(self._columns, kind=kind, ascending=ascending, key=key) columns = self._columns[order] blocks = self._blocks[order] return self.__class__(blocks, index=self._index, columns=columns, name=self._name, own_data=True, own_columns=True, )
[docs] @doc_inject(selector='sort') def sort_values(self, label: TKeyOrKeys, # elsewhere this is called 'key' *, ascending: TBoolOrBools = True, axis: int = 1, kind: TSortKinds = DEFAULT_SORT_KIND, key: tp.Optional[tp.Callable[[tp.Union[TFrameAny, TSeriesAny]], tp.Union[TNDArrayAny, TSeriesAny, TFrameAny]]] = None, ) -> tp.Self: ''' Return a new :obj:`Frame` ordered by the sorted values, where values are given by single column or iterable of columns. Args: label: A label or iterable of labels to select the columns (for axis 1) or rows (for axis 0) to sort. * {ascendings} axis: Axis upon which to sort; 0 orders columns based on one or more rows; 1 orders rows based on one or more columns. {kind} {key} ''' values_for_sort: TNDArrayAny | tp.List[TNDArrayAny] | None = None values_for_lex: TOptionalArrayList = None cfs: TNDArrayAny | TSeriesAny | TFrameAny | TypeBlocks if axis == 0: # get a column ordering based on one or more rows iloc_key = self._index._loc_to_iloc(label) # type: ignore if key: cfs = key(self._extract(row_key=iloc_key)) cfs_is_array = cfs.__class__ is np.ndarray if (cfs.ndim == 1 and len(cfs) != self.shape[1]) or (cfs.ndim == 2 and cfs.shape[1] != self.shape[1]): # pyright: ignore raise RuntimeError('key function returned a container of invalid length') else: # go straight to array as, since this is row-wise, have to find a consolidated cfs = self._blocks._extract_array(row_key=iloc_key) cfs_is_array = True if cfs_is_array: if cfs.ndim == 1: values_for_sort = cfs # type: ignore elif cfs.ndim == 2 and cfs.shape[0] == 1: values_for_sort = cfs[0] # type: ignore else: values_for_lex = [cfs[i] for i in range(cfs.shape[0]-1, -1, -1)] # pyright: ignore elif cfs.ndim == 1: # Series values_for_sort = cfs.values # type: ignore elif isinstance(cfs, Frame): cfs = cfs._blocks if cfs.shape[0] == 1: values_for_sort = cfs._extract_array(row_key=0) else: values_for_lex = [cfs._extract_array(row_key=i) for i in range(cfs.shape[0]-1, -1, -1)] elif axis == 1: # get a row ordering based on one or more columns iloc_key = self._columns._loc_to_iloc(label) # type: ignore if key: cfs = key(self._extract(column_key=iloc_key)) cfs_is_array = cfs.__class__ is np.ndarray if (cfs.ndim == 1 and len(cfs) != self.shape[0]) or (cfs.ndim == 2 and cfs.shape[0] != self.shape[0]): raise RuntimeError('key function returned a container of invalid length') else: # get array from blocks cfs = self._blocks._extract(column_key=iloc_key) # get TypeBlocks cfs_is_array = False if cfs_is_array: if cfs.ndim == 1: values_for_sort = cfs # type: ignore elif cfs.ndim == 2 and cfs.shape[1] == 1: # pyright: ignore values_for_sort = cfs[:, 0] # type: ignore else: values_for_lex = [cfs[:, i] for i in range(cfs.shape[1]-1, -1, -1)] #type: ignore elif cfs.ndim == 1: # Series values_for_sort = cfs.values # type: ignore else: #Frame/TypeBlocks from here if isinstance(cfs, Frame): cfs = cfs._blocks if cfs.shape[1] == 1: # pyright: ignore values_for_sort = cfs._extract_array_column(0) # type: ignore else: values_for_lex = [cfs._extract_array_column(i) # type: ignore for i in range(cfs.shape[1]-1, -1, -1)] # pyright: ignore else: raise AxisInvalid(f'invalid axis: {axis}') asc_is_element, values_for_lex = prepare_values_for_lex( # type: ignore ascending=ascending, values_for_lex=values_for_lex, ) if values_for_lex is not None: order = np.lexsort(values_for_lex) elif values_for_sort is not None: order = np.argsort(values_for_sort, kind=kind) if asc_is_element and not ascending: # NOTE: if asc is not an element, then ascending Booleans have already been applied to values_for_lex # NOTE: putting the order in reverse, not invetering the selection, produces the descending sort order = order[::-1] if axis == 0: columns = self._columns[order] blocks = self._blocks._extract(column_key=order) # order columns return self.__class__(blocks, index=self._index, columns=columns, name=self._name, own_data=True, own_columns=True, own_index=True, ) index = self._index[order] blocks = self._blocks._extract(row_key=order) return self.__class__(blocks, index=index, columns=self._columns, name=self._name, own_data=True, own_index=True )
[docs] def isin(self, other: tp.Any) -> TFrameAny: ''' Return a same-sized Boolean :obj:`Frame` that shows if the same-positioned element is in the passed iterable. ''' return self.__class__( self._blocks.isin(other), index=self._index, columns=self._columns, own_data=True, name=self._name, )
[docs] @doc_inject(class_name='Frame') def clip(self, *, lower: tp.Optional[tp.Union[float, TSeriesAny, TFrameAny]] = None, upper: tp.Optional[tp.Union[float, TSeriesAny, TFrameAny]] = None, axis: tp.Optional[int] = None ) -> TFrameAny: '''{} Args: lower: value, :obj:`Series`, :obj:`Frame` upper: value, :obj:`Series`, :obj:`Frame` axis: required if ``lower`` or ``upper`` are given as a :obj:`Series`. ''' if lower is None and upper is None: return self.__class__(self._blocks.copy(), index=self._index, columns=self._columns, own_data=True, name=self._name ) args: tp.List[float | TNDArrayAny | ContainerOperand | None] = [lower, upper] for idx, arg in enumerate(args): if arg is None: continue bound = -np.inf if idx == 0 else np.inf if isinstance(arg, Series): if axis is None: raise RuntimeError('cannot use a Series argument without specifying an axis') target = self._index if axis == 0 else self._columns values = arg.reindex(target).fillna(bound).values if axis == 0: # duplicate the same column over the width # NOTE: extracting array, then scaling in a list, assuming we are just multiply references, not creating copies args[idx] = [values] * self.shape[1] # type: ignore else: # create a list of row-length arrays for maximal type preservation args[idx] = [np.full(self.shape[0], v) for v in values] # type: ignore elif isinstance(arg, Frame): args[idx] = arg.reindex( # type: ignore index=self._index, columns=self._columns).fillna(bound)._blocks._blocks elif hasattr(arg, '__iter__'): raise RuntimeError('only Series or Frame are supported as iterable lower/upper arguments') # assume single value otherwise, no change necessary blocks = self._blocks.clip(*args) # type: ignore return self.__class__(blocks, columns=self._columns, index=self._index, name=self._name, own_data=True, own_index=True, )
[docs] def transpose(self) -> TFrameAny: '''Transpose. Return a :obj:`Frame` with ``index`` as ``columns`` and vice versa. ''' return self.__class__(self._blocks.transpose(), index=self._columns, columns=self._index, own_data=True, own_index=self.STATIC, own_columns=self.STATIC, name=self._name)
@property def T(self) -> TFrameAny: '''Transpose. Return a :obj:`Frame` with ``index`` as ``columns`` and vice versa. ''' return self.transpose()
[docs] @doc_inject(selector='duplicated') def duplicated(self, *, axis: int = 0, exclude_first: bool = False, exclude_last: bool = False) -> TSeriesAny: ''' Return an axis-sized Boolean :obj:`Series` that shows True for all rows (axis 0) or columns (axis 1) duplicated. Args: {axis} {exclude_first} {exclude_last} ''' # might be able to do this witnout calling .values and passing in TypeBlocks, but TB needs to support roll duplicates = array_to_duplicated(self.values, axis=axis, exclude_first=exclude_first, exclude_last=exclude_last) duplicates.flags.writeable = False if axis == 0: # index is index return Series(duplicates, index=self._index) return Series(duplicates, index=self._columns)
[docs] @doc_inject(selector='duplicated') def drop_duplicated(self, *, axis: int = 0, exclude_first: bool = False, exclude_last: bool = False ) -> TFrameAny: ''' Return a :obj:`Frame` with duplicated rows (axis 0) or columns (axis 1) removed. All values in the row or column are compared to determine duplication. Args: {axis} {exclude_first} {exclude_last} ''' # NOTE: full row or column comparison is necessary, so passing .values is likely the only option. duplicates = array_to_duplicated(self.values, axis=axis, exclude_first=exclude_first, exclude_last=exclude_last, ) if not duplicates.any(): return self.__class__( self._blocks.copy(), index=self._index, columns=self._columns, own_data=True, own_index=True, name=self._name, ) keep = ~duplicates if axis == 0: # return rows with index indexed return self.__class__( self._blocks._extract(row_key=keep), index=self._index[keep], columns=self._columns, own_index=True, name=self._name, own_data=True, ) return self.__class__( self._blocks._extract(column_key=keep), index=self._index, columns=self._columns[keep], own_index=True, name=self._name, own_data=True, )
# invalid axis will raise in array_to_duplicated
[docs] def set_index(self, column: TLabel, *, drop: bool = False, index_constructor: TIndexCtorSpecifier = None, ) -> TFrameAny: ''' Return a new :obj:`Frame` produced by setting the given column as the index, optionally removing that column from the new :obj:`Frame`. Args: column: * drop: index_constructor: ''' column_iloc = self._columns._loc_to_iloc(column) if column_iloc is None: # if None was a key it would have an iloc return self if self.STATIC else self.__class__(self) if drop: blocks = TypeBlocks.from_blocks( self._blocks._drop_blocks(column_key=column_iloc)) columns = self._columns._drop_iloc(column_iloc) own_data = True own_columns = True else: blocks = self._blocks columns = self._columns own_data = False own_columns = False index_values: tp.Iterable[TLabel] if isinstance(column_iloc, INT_TYPES): index_values = self._blocks._extract_array_column(column_iloc) name = column else: index_values = self._blocks.iter_row_tuples(column_iloc) name = tuple(self._columns[column_iloc]) index = index_from_optional_constructor(index_values, default_constructor=Index, explicit_constructor=index_constructor, ) if index.name is None: # NOTE: if a constructor has not set a name, we set the name as expected index = index.rename(name) return self.__class__(blocks, columns=columns, index=index, own_data=own_data, own_columns=own_columns, own_index=True, name=self._name, )
[docs] def set_index_hierarchy(self, columns: TLocSelector, *, drop: bool = False, index_constructors: TIndexCtorSpecifiers = None, reorder_for_hierarchy: bool = False, ) -> TFrameAny: ''' Given an iterable of column labels, return a new ``Frame`` with those columns as an ``IndexHierarchy`` on the index. Args: columns: Iterable of column labels. drop: Boolean to determine if selected columns should be removed from the data. index_constructors: Optionally provide a sequence of ``Index`` constructors, of length equal to depth, to be used in converting columns Index components in the ``IndexHierarchy``. reorder_for_hierarchy: reorder the rows to produce a hierarchible Index from the selected columns, assuming hierarchability is possible. Returns: :obj:`Frame` ''' column_loc: TLocSelector if isinstance(columns, tuple): # NOTE: this prohibits selecting a single tuple label, which might be fine given context column_loc = list(columns) name = columns else: column_loc = columns name = None # could be a slice, must get post iloc conversion column_iloc = self._columns._loc_to_iloc(column_loc) if name is None: # NOTE: is this the best approach if columns is IndexHierarchy? name = tuple(self._columns[column_iloc]) index_labels = self._blocks._extract(column_key=column_iloc) if reorder_for_hierarchy: rehierarched_blocks, order_lex = rehierarch_from_type_blocks( labels=index_labels, depth_map=range(index_labels.shape[1]), # keep order ) index = IndexHierarchy._from_type_blocks( blocks=rehierarched_blocks, index_constructors=index_constructors, name=name, own_blocks=True, name_interleave=True, ) blocks_src = self._blocks._extract(row_key=order_lex) else: index = IndexHierarchy._from_type_blocks( index_labels, index_constructors=index_constructors, name=name, own_blocks=True, name_interleave=True, ) blocks_src = self._blocks if drop: blocks = TypeBlocks.from_blocks( blocks_src._drop_blocks(column_key=column_iloc)) columns = self._columns._drop_iloc(column_iloc) own_data = True own_columns = True else: blocks = blocks_src columns = self._columns own_data = False own_columns = False return self.__class__(blocks, columns=columns, index=index, own_data=own_data, own_columns=own_columns, own_index=True, name=self._name )
[docs] def unset_index(self, *, names: tp.Sequence[TLabel] = (), drop: bool = False, consolidate_blocks: bool = False, columns_constructors: TIndexCtorSpecifiers = None, ) -> TFrameAny: ''' Return a new :obj:`Frame` where the index is added to the front of the data, and an :obj:`IndexAutoFactory` is used to populate a new index. If the :obj:`Index` has a ``name``, that name will be used for the column name, otherwise a suitable default will be used. As underlying NumPy arrays are immutable, data is not copied. Args: names: An iterable of hashables to be used to name the unset index. If an ``Index``, a single hashable should be provided; if an ``IndexHierarchy``, as many hashables as the depth must be provided. consolidate_blocks: columns_constructors: ''' # disallows specifying names with 'drop=True' if drop is True and names: raise RuntimeError("Cannot specify `names` when `drop=True`, as the index will not be added back as columns.") def blocks() -> tp.Iterator[TNDArrayAny]: # yield index as columns, then remaining blocks currently in Frame if not drop: if self._index.ndim == 1: yield self._index.values else: # No recache is needed as it's not possible for an index to be GO yield from self._index._blocks._blocks # type: ignore yield from self._blocks._blocks block_gen: tp.Callable[[], tp.Iterator[TNDArrayAny]] if consolidate_blocks: block_gen = lambda: TypeBlocks.consolidate_blocks(blocks()) else: block_gen = blocks columns: None | IndexBase if drop: # When dropping the index, keep the existing columns without adding index names columns, own_columns = self._columns, self.STATIC else: if not names: names = self._index.names columns_depth = self._columns.depth index_depth = self._index.depth if len(names) != index_depth: raise RuntimeError('Passed `names` must have a label (or sequence of labels) per depth of index.') if columns_depth > 1: if isinstance(names[0], str) or not hasattr(names[0], '__len__'): raise RuntimeError(f'Invalid name labels ({names[0]!r}); provide a sequence with a label per columns depth.') if index_depth == 1: # assume that names[0] is an iterable of labels per columns depth level (one column of labels) columns_labels = TypeBlocks.from_blocks( # type: ignore concat_resolved((np.array([name]), self._columns.values_at_depth(i))) for i, name in enumerate(names[0]) #type: ignore ) else: # assume that names is an iterable of columns, each column with a label per columns depth labels_per_depth = [] for labels in zip(*names): a, _ = iterable_to_array_1d(labels) labels_per_depth.append(a) # assert len(labels_per_depth) == columns_depth columns_labels = TypeBlocks.from_blocks( concat_resolved((labels, self._columns.values_at_depth(i))) for i, labels in enumerate(labels_per_depth) ) columns_default_constructor: TIndexHierarchyCtor = partial( self._COLUMNS_HIERARCHY_CONSTRUCTOR._from_type_blocks, own_blocks=True) else: # columns depth is 1, label per index depth is correct columns_labels = chain(names, self._columns.values) # type: ignore columns_default_constructor = self._COLUMNS_CONSTRUCTOR # type: ignore columns, own_columns = index_from_optional_constructors( columns_labels, # pyright: ignore depth=columns_depth, default_constructor=columns_default_constructor, explicit_constructors=columns_constructors, # cannot supply name ) return self.__class__( TypeBlocks.from_blocks(block_gen()), columns=columns, own_columns=own_columns, index=None, own_data=True, name=self._name, )
[docs] def set_columns(self, index: TLabel, *, drop: bool = False, columns_constructor: TIndexCtorSpecifier = None, ) -> TFrameAny: ''' Return a new :obj:`Frame` produced by setting the given row as the columns, optionally removing that row from the new :obj:`Frame`. Args: index: * drop: columns_constructor: ''' index_iloc = self._index._loc_to_iloc(index) if index_iloc is None or (index_iloc.__class__ is np.ndarray and len(index_iloc) == 0): # type: ignore # if None was a key it would have an iloc return self if self.STATIC else self.__class__(self) if drop: blocks = TypeBlocks.from_blocks( self._blocks._drop_blocks(row_key=index_iloc)) index_final = self._index._drop_iloc(index_iloc) own_data = True else: blocks = self._blocks index_final = self._index own_data = False if isinstance(index_iloc, INT_TYPES): columns_values = self._blocks.iter_row_elements(index_iloc) name = index else: # given a multiple row selection, yield a tuple accross rows (column values) as tuples; this acvoids going through arrays columns_values = self._blocks.iter_columns_tuples(index_iloc) name = tuple(self._index[index_iloc]) columns = index_from_optional_constructor(columns_values, default_constructor=self._COLUMNS_CONSTRUCTOR, explicit_constructor=columns_constructor, ) if columns.name is None: # NOTE: if a constructor has not set a name, we set the name as expected columns = columns.rename(name) return self.__class__(blocks, columns=columns, index=index_final, own_data=own_data, own_columns=True, own_index=True, name=self._name, )
[docs] def set_columns_hierarchy(self, index: TLocSelector, *, drop: bool = False, columns_constructors: TIndexCtorSpecifiers = None, reorder_for_hierarchy: bool = False, ) -> TFrameAny: ''' Given an iterable of index labels, return a new ``Frame`` with those rows as an ``IndexHierarchy`` on the columns. Args: index: Iterable of index labels. drop: Boolean to determine if selected rows should be removed from the data. columns_constructors: Optionally provide a sequence of ``Index`` constructors, of length equal to depth, to be used in converting row Index components in the ``IndexHierarchy``. reorder_for_hierarchy: reorder the columns to produce a hierarchible Index from the selected columns. Returns: :obj:`Frame` ''' index_loc: TLocSelector if isinstance(index, tuple): # NOTE: this prohibits selecting a single tuple label, which might be fine given context index_loc = list(index) name = index else: index_loc = index name = None # could be a slice, must get post iloc conversion index_iloc = self._index._loc_to_iloc(index_loc) if name is None: # NOTE: is this the best approach if index is IndexHierarchy? name = tuple(self._index[index_iloc]) # NOTE: must transpose so that blocks are organized by what was each row columns_labels = self._blocks._extract(row_key=index_iloc).transpose() if reorder_for_hierarchy: rehierarched_blocks, order_lex = rehierarch_from_type_blocks( labels=columns_labels, depth_map=range(columns_labels.shape[1]), # keep order ) columns = self._COLUMNS_HIERARCHY_CONSTRUCTOR._from_type_blocks( blocks=rehierarched_blocks, index_constructors=columns_constructors, name=name, own_blocks=True, name_interleave=True, ) blocks_src = self._blocks._extract(column_key=order_lex) else: columns = self._COLUMNS_HIERARCHY_CONSTRUCTOR._from_type_blocks( columns_labels, index_constructors=columns_constructors, name=name, own_blocks=True, name_interleave=True, ) blocks_src = self._blocks if drop: blocks = TypeBlocks.from_blocks( blocks_src._drop_blocks(row_key=index_iloc)) index = self._index._drop_iloc(index_iloc) own_data = True own_index = True else: blocks = blocks_src index = self._index own_data = False own_index = False return self.__class__(blocks, columns=columns, index=index, own_data=own_data, own_columns=True, own_index=own_index, name=self._name )
[docs] def unset_columns(self, *, names: tp.Sequence[TLabel] = (), drop: bool = False, index_constructors: TIndexCtorSpecifiers = None, ) -> TFrameAny: ''' Return a new :obj:`Frame` where columns are added to the top of the data, and an :obj:`IndexAutoFactory` is used to populate new columns. This operation potentially forces a complete copy of all data. Args: names: An sequence of hashables to be used to name the unset columns. If an ``Index``, a single hashable should be provided; if an ``IndexHierarchy``, as many hashables as the depth must be provided. index_constructors: ''' if drop is True and names: raise RuntimeError("The `names` parameter cannot be used with `drop=True` because the column labels will not be included in the resulting Frame.") if not names and drop is False: names = self._columns.names index: None | IndexBase if drop is True: index = self._index own_index = True blocks = self._blocks.copy() # permit owning else: # columns blocks are oriented as "rows" here, and might have different types per row; when moved on to the frame, types will have to be consolidated "vertically", meaning there is little chance of consolidation. A maximal decomposition might give a chance, but each ultimate column would have to be re-evaluated, and that would be expense. blocks = TypeBlocks.from_blocks( TypeBlocks.vstack_blocks_to_blocks(( TypeBlocks.from_blocks(self.columns.values).transpose(), self._blocks )) ) columns_depth = self._columns.depth index_depth = self._index.depth if len(names) != columns_depth: raise RuntimeError('Passed `names` must have a label (or sequence of labels) per depth of columns.') index_default_constructor: TIndexCtorSpecifier if index_depth > 1: if isinstance(names[0], str) or not hasattr(names[0], '__len__'): raise RuntimeError(f'Invalid name labels ({names[0]!r}); provide a sequence with a label per index depth.') if columns_depth == 1: # assume that names[0] is an iterable of labels per index depth level (one row of labels) index_labels = TypeBlocks.from_blocks( # type: ignore concat_resolved((np.array([name]), self._index.values_at_depth(i))) for i, name in enumerate(names[0]) # type: ignore ) else: # assume that names is an iterable of rows, each row with a label per index depth labels_per_depth = [] for labels in zip(*names): a, _ = iterable_to_array_1d(labels) labels_per_depth.append(a) # assert len(labels_per_depth) == index_depth index_labels = TypeBlocks.from_blocks( concat_resolved((labels, self._index.values_at_depth(i))) for i, labels in enumerate(labels_per_depth) ) index_default_constructor = partial( IndexHierarchy._from_type_blocks, own_blocks=True) else: # index depth is 1, label per columns depth is correct index_labels = chain(names, self._index.values) # type: ignore index_default_constructor = Index index, own_index = index_from_optional_constructors( index_labels, # pyright: ignore depth=index_depth, default_constructor=index_default_constructor, explicit_constructors=index_constructors, # cannot supply name ) return self.__class__( blocks, columns=None, own_index=own_index, index=index, own_data=True, name=self._name, )
[docs] def __round__(self, decimals: int = 0) -> TFrameAny: ''' Return a :obj:`Frame` rounded to the given decimals. Negative decimals round to the left of the decimal point. Args: decimals: number of decimals to round to. Returns: :obj:`Frame` ''' return self.__class__( self._blocks.__round__(decimals=decimals), index=self._index, columns=self._columns, name=self._name, own_data=True, own_index=True, )
[docs] def roll(self, index: int = 0, columns: int = 0, *, include_index: bool = False, include_columns: bool = False) -> TFrameAny: ''' Roll columns and/or rows by positive or negative integer counts, where columns and/or rows roll around the axis. Args: include_index: Determine if index is included in index-wise rotation. include_columns: Determine if column index is included in index-wise rotation. ''' shift_index = index shift_column = columns blocks = TypeBlocks.from_blocks( self._blocks._shift_blocks_fill_by_element( row_shift=shift_index, column_shift=shift_column, wrap=True )) if include_index: index_idx = self._index.roll(shift_index) own_index = True else: index_idx = self._index own_index = False if include_columns: columns_idx = self._columns.roll(shift_column) own_columns = True else: columns_idx = self._columns own_columns = False return self.__class__(blocks, columns=columns_idx, index=index_idx, name=self._name, own_data=True, own_columns=own_columns, own_index=own_index, )
[docs] def shift(self, index: int = 0, columns: int = 0, *, fill_value: tp.Any = np.nan, ) -> TFrameAny: ''' Shift columns and/or rows by positive or negative integer counts, where columns and/or rows fall of the axis and introduce missing values, filled by `fill_value`. ''' shift_index = index